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Phenotypic plasticity—one individual’s capacity for phenotypic variation
under different environments—is critical for organisms facing fluctuating con-
ditions within their lifetime. North American red squirrels (Tamiasciurus
hudsonicus) experience drastic among-year fluctuations in conspecific density.
This shapes juvenile competition over vacant territories and overwinter
survival. To help young cope with competition at high densities, mothers
can increase offspring growth rates via a glucocorticoid-mediated maternal
effect. However, this effect is only adaptive under high densities, and faster
growth often comes at a cost to longevity. While red squirrels can adjust
hormones in response to fluctuating density, the degree to which mothers
differ in glucocorticoid plasticity across changing densities remains unknown.
Findings from our reaction norm approach revealed significant individual
variation not only in a female red squirrel’s mean endocrine phenotype but
also in endocrine plasticity in response to changes in local density. Future
work on proximate and ultimate drivers of variation in endocrine plasticity
andmaternal effects is needed, particularly in free-living animals experiencing
fluctuating environments.
1. Introduction
All organisms experience changes in their environment, and the ability to adjust
morphology, physiology or behaviour according to environmental conditions can
provide individuals with important fitness benefits [1]. Phenotypic plasticity—
when one individual can produce multiple phenotypes across a gradient of
environments—is thought to represent an important mechanism allowing organ-
isms to respond to environmental changes [2]. Phenotypic plasticity may be
particularly important for organisms in fine-grained environments [1], defined
by spatial or temporal fluctuations of key environmental features that occur
within an individual’s lifespan [3,4].

North American red squirrels (Tamiasciurus hudsonicus, hereafter ‘red squir-
rels’) experience drastic fluctuations in their fine-grained environment, where an
important aspect of their environment—local conspecific density—can vary up
to fourfold within an individual’s lifetime [5]. Pulses in food resources lead
to periods of high density, posing a challenge for breeding individuals as the
availability of vacant territories critical for offspring overwinter survival is
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Table 1. We compared four LMMs differing in random effect structure to test for individual differences in endocrine plasticity. Fixed effects were identical in all
models.

model random effects

covariance
(intercepts
and slopes) d.f. AICC ΔAIC

model
weight

model 1: null n.a. n.a. 15 3353.9 80.7 <0.001

model 2: with ID intercept (ID) n.a. 16 3279.4 6.3 0.027

model 3: with ID × density, no covariance intercept (ID) slopes (ID × density) no 17 3273.1 0 0.630

model 4: with ID × density, with covariance intercept (ID) slopes (ID × density) yes 18 3274.3 1.2 0.343
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low and competition for these vacancies is high [6–8]. Red
squirrel mothers can prepare their young to cope with high-
density conditions via an adaptive hormone-mediatedmaternal
effect [5]: under high densities, mothers with elevated glucocor-
ticoids during pregnancy give birth to faster-growing pups that
have a greater probability of surviving their first winter [5]. In
this system, thismaternal effect is only adaptive under high den-
sities [5,9], since faster growth does not improve juvenile
recruitment under low density [5,10]. Offspring born under
high densities have shorter lifespans [10], potentially suggesting
a trade-off between growth and lifespan [5]—this would be con-
sistent with mammalian fitness costs of compensatory growth
[11–13]. Chronically elevated glucocorticoidsmay have negative
impacts on mothers, leading to oxidative stress [14], immuno-
suppression [15,16] and reduced parental care [17]. We expect
the optimal red squirrel maternal phenotype to include elevated
glucocorticoids during periods of high density, but decreased
glucocorticoids during periods of low density.While glucocorti-
coids are positively related to density in red squirrels [5], the
degree to which individuals vary in their endocrine response
to changes in density remains unclear [18–20].

Glucocorticoids are mediators of phenotypic plasticity
in vertebrates [19,20], promoting phenotypic adjustments follow-
ing perturbations in an animal’s environment [18,21–23]. This
hormone is plastic [24,25], as organisms regulate glucocorticoids
in response to diverse stressors [26,27]. We take a reaction norm
approach to explore within-individual variation in glucocorti-
coid plasticity (sometimes called ‘endocrine flexibility’ [18]) in
red squirrel females experiencing drastic among-year environ-
mental fluctuations. While this hormone is known to change
across contexts [18], little is known about the degree to which
individuals might differ in their endocrine plasticity. We
measured faecal cortisol metabolites (FCM)—a non-invasive
measure of adrenocortical activity [28]—which was validated
previously in red squirrels to reflect exposure to stressors [29].
We determine whether female squirrels show (i) individual vari-
ation in FCM and/or (ii) individual variation in the plasticity of
FCM in response to density changes.

2. Material and methods
(a) Field data collection
We studied two populations (Kloo and Sulphur) that have been
monitored since 1987, as part of the Kluane Red Squirrel Project
in the Yukon in Canada (61° N, 138°W). Each red squirrel defends
one exclusive territory over their lifespan (up to 8 years, mean ±
s.d. = 3.53 ± 1.84 [30]), containing a hoard of cones from white
spruce (Picea glauca). Seeds from cached cones sustain squirrels
through winter, making territory ownership crucial for survival
[6–8]. Individuals were uniquely marked with numbered ear
tags and unique colouredwires. Territory ownership was assessed
reliably each spring via a population-wide census (described in
[31]). Populationswere completely enumerated annually and terri-
tory ownership was confirmed via observations of territorial
vocalizations and live-trapping (using food-baited Tomahawk
Live Traps, Tomahawk,WI, USA).We calculated each individual’s
local spring density as the number of neighbours owning terri-
tories within the acoustic environment of the focal individual
(i.e. within a 130 m radius) [32].

Between 2006 and 2014, we collected faeces opportunistically
when trapping individuals (from February to September, mean
time of day ± s.d. = 11:30 a.m. ± 3 h). We checked below traps for
fresh faeces, which we kept on ice until they could be frozen
(within 5 h) [29]. We assessed female breeding status at the time
each sample was collected (pregnant n = 573; lactating n = 337; or
non-breeding n = 819) by palpating the abdomen for fetuses and
checking nipple condition [30]. While FCM during pregnancy
and lactation would most likely mediate maternal effects, we
also include non-breeding samples. Firstly, this increases repeated
observations in our dataset. Secondly, FCM are repeatable—non-
breeding FCM thus provide some information about an individ-
ual’s breeding phenotype. Finally, females likely adjust their
HPA-axis pre-conception in anticipation of breeding (i.e. during
non-breeding periods) [29]. FCMwere assayed in one of two facili-
ties (Michigan or Toronto) following identical, previously
validated protocols [29,33]. A subset of samples (n = 128) analysed
in both laboratories were strongly positively correlated (Pearson
correlation = 0.88), suggesting laboratory identity had minimal
effects on FCM. Samples were thawed, lyophilized, flash-frozen
and pulverized by mortar and pestle. Steroids were extracted
using 80% methanol (1 ml for 0.05 g of dry faeces) [29,34], and
the supernatant was used in an enzyme immunoassay to quantify
glucocorticoid metabolites with a 5α-3β,11β-diol structure [29]. A
sample quality control run in all assays across years (n = 115)
showed estimates of optical density were highly repeatable (R =
0.85, 95% confidence intervals (CI) = 0.54–0.93). FCM are
expressed as ng g−1 of dry faeces and ln-transformed to meet
assumptions of a statistical test.
(b) Statistical analyses
Our dataset included 1729 FCM measurements collected from 153
females, where individuals were typically sampled multiple times
per year (mean samples per year ± s.d. = 6.2 ± 5.1, range = 1–44)
[35]. This included 57 individuals with repeated FCM measure-
ments across multiple densities (sampled in 2 or more years,
mean± s.d. = 2.4 ± 0.73, max= 5). We did not censor individuals
sampled in only one year, as including these observations helped
parametrize fixed effects and did not bias estimates for random
effects [36].

We examined variation in endocrine plasticity with random
regression models [36,37], fitting four linear mixed models
(LMMs) by maximum likelihood and identifying the best-
supported model(s) using Akaike’s information criterion [38,39].
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Figure 1. Reaction norms for repeatedly sampled female red squirrels (n =
57). Each line indicates one individual’s reaction norm, connecting mean
annual endocrine phenotype across densities. The emboldened line with
shaded 95% CI indicates the population-wide relationship between faecal
glucocorticoid metabolites (ng g−1) and local density (squirrels ha−1),
where the y-axis is on a ln-scale. (Online version in colour.)
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We performed LMMs in R [40] using ‘lme4’ (v. 1.1-17). Diagnostic
plots revealed model residuals were normally distributed and not
heteroscedastic. We identified the top model(s) using ‘bbmle’
(v. 1.0.20) to calculate model AICC scores and model weights.
Lower AICC scores indicate stronger support, and models within
two AICC units fit a dataset similarly well [39].

We built a null model including the following variables,
because they are known to influence FCM in red squirrels [5,29]:
breeding status, linear and quadratic effects of Julian date, the facil-
ity of analysis, local spring density and year as fixed effects.
Controlling for age did not alter the conclusions of the study and
since age was not a significant predictor, we excluded it from our
models (as in [5]). There were no nonlinear effects of predictors
(beyond the quadratic effect of sampling date). We standardized
continuous fixed effects (i.e. with mean = 0, s.d. = 1), and checked
for multicollinearity (variance inflation factors less than 2).
Model 1 (null) included only fixed effects. Model 2 built on the
null model, adding a random intercept for each individual.
Models 3 and 4 added a random slope for density to model 2,
which allowed us to test for individual variation in endocrine plas-
ticity across changes in density [36].Model 3 assumed therewas no
correlation between random intercepts and slopes, whereas model
4 allowed for random intercepts and slopes to be correlated. This
tested whether an individual’s endocrine phenotype affected the
likelihood they exhibited weaker or stronger plasticity.
3. Results
Female red squirrels had FCM levels from 247 to 46 573 ng g−1

and experienced local densities ranging from 0.19 to 3.96 squir-
rels per hectare. We identified two equivalent top models with
a combined weight of 97%, both including random intercepts
and slopes (models 3 and 4; table 1). Model 4 also included a
negative correlation between intercepts and slopes, though
this correlation was not statistically significant (the 95% CI
overlapped with 0; table 2). The other two models had a
ΔAIC of 6 or more, indicating they were not supported by
the data (table 1).

The top models suggest female red squirrels show individ-
ual variation in FCM, as well as individual variation in
endocrine plasticity across changes in density (figure 1). We
did not find support for a correlation between random
intercepts and slopes (table 2). Thus, an individual’s tendency
to have elevated FCMwas independent of the degree to which
they exhibited endocrine plasticity (figure 2). The fixed effects
in both models supported previous findings in this system,
where FCM changed across years and breeding status and
declined nonlinearly with Julian date (table 2) [5,29].
4. Discussion
This study highlights three key results about endocrine vari-
ation in free-living red squirrels. First, individuals differed
consistently in FCM. Second, females differed in their endocrine
plasticity in response to changes in density. Over half of females
had elevated FCM as population density increased (56% of
females, slope greater than 0.01), whereas 9% of females
showed little change (−0.01 < slope < 0.01) and 35% of females
showed a decline in FCM with increasing density (slope less
than −0.01). Finally, our results suggest that an individual’s
mean FCM phenotype does not covary with their plasticity in
FCM in response to changes in their social environment.

Our results add to a growing body of literature supporting
significant individual variation in glucocorticoid plasticity.
House sparrows (Passer domesticus) showed individual vari-
ation in the degree to which glucocorticoids declined with
age [41] or with food availability [24], where some individuals
responded strongly to changes in age or food availability, while
others showed little response. Similarly, free-living male
chimpanzees (Pan troglodytes) showed repeatable individual
variation in urinary glucocorticoid responses to circadian
changes [42]. Our study is the first to examine variation in
endocrine plasticity along a natural gradient of ecological con-
ditions, providing important insights into how organisms
differ in their ability to track environmental changes. Future
studies characterizing endocrine plasticity in free-living ani-
mals will be critical to better predict how individuals,
populations or species cope with changing environments.

The prevalence of individual variation in glucocorticoid
plasticity across studies suggests individuals frequently differ
in their abilities to respond to environmental challenges,
though the proximate mechanism underlying these differences
remains unknown. In red squirrels, individuals that do not
increase FCM under elevated densities could have responded
plastically in downstream targets of glucocorticoids (e.g. chan-
ging receptor densities or corticosteroid-binding globulins
[43]). A second possibility is that individuals showing little
change in glucocorticoids across densitiesmight be constrained
in their ability to regulate glucocorticoid secretion [18]—ani-
mals with elevated glucocorticoids may already be operating
at their physiological maximum andmay be unable to increase
circulating concentrations further. If this were the case, how-
ever, we would expect to find a negative correlation between
intercepts and slopes (whichwas not supported). A third possi-
bility is that individuals differ in their ability to perceive local
density—individuals underestimating density could fail to
upregulate glucocorticoids under high-density conditions.

More broadly, it is unclear whether individual differences
in endocrine plasticity arise from genetic, early-life or environ-
mental effects. Circulating glucocorticoids are shaped in part
by additive genetic effects [44–47], though the heritability of
glucocorticoid plasticity has not been examined [18]. Early-
life exposure to fluctuating environments [48], maternal
glucocorticoids [49] and reduced parental care [50] all shape
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the glucocorticoid phenotype of offspring [51–53] and could
similarly shape variation in endocrine plasticity. Future
research on endocrine plasticity is needed to understand (i)
the proximate mechanism generating variation in glucocorti-
coid plasticity and (ii) the evolutionary causes and
consequences of variation in glucocorticoid plasticity.
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