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a b s t r a c t

Aggression can be modulated by both genetic and environmental factors. Here, we analyse how the
serotonin transporter (5-HTT) genotype and the environmental situation in which a contest takes place
shape the display of offensive aggression. Therefore, male wildtype, heterozygous, and homozygous 5-
HTT knockout mice, which are known to differ in inborn levels of anxiety, were confronted three times
with a docile opponent in one of three environmental situations: own territory, opponent’s territory or
neutral area. The main findings were: The frequency of approaching the contestant in order to gather
information about him depended significantly on the venue but not on the genotype with lowest fre-
quencies in the opponent’s territory. The decision how quickly to attack the opponent was significantly
influenced by the 5-HTT genotype but not by the venue: Homozygous 5-HTT knockout mice showed
longest latencies. The sum of offensive aggression was significantly influenced by the 5-HTT genotype,
isk profile
ost/benefit ratio

the environmental situation, and a genotype by environment interaction. It is likely that, due to their
varying genetic predisposition for anxiety, mice of the three genotypes were differentially affected by
the aversiveness of the respective venue and the opponent’s behaviour, which influenced their decision
to display offensive aggression. As a consequence, the amount of aggression shown by homozygous 5-
HTT knockout mice was influenced by the venue and the opponent’s behaviour, whereas heterozygotes
reacted only to the venue. Strikingly, wildtypes behaved always the same way, irrespective of venue and

opponent.

. Introduction

Both genetic and environmental factors are involved in the dis-
lay of aggressive behaviour [2]. On the molecular level, serotonin
5-HT) signalling turns out to be the major modulator of emo-
ional behaviour including aggression and impulsivity in humans,
onhuman primates, and other mammals [88]. However, it is not
ufficiently clarified whether 5-HT generally dampens aggression
r if it plays an opposite role in adaptive and escalated forms of

ggressive behaviour [17,45,58,66]. Especially the 5-HT transporter
5-HTT), one of the functional components of the 5-HT pathway, has
een linked to aggression [22,28,46].
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The 5-HTT is a key regulator in serotonergic neurotransmission,
removing serotonin from the synaptic cleft into the presynaptic
terminal and thus determining the magnitude and duration of post-
synaptic receptor-mediated signalling [12,47]. In humans, a repeat
length polymorphism in the transcriptional control region of the
5-HTT gene (SLC6A4) was found, resulting in allelic variation of 5-
HTT expression and function as well as anxiety and depression,
but also aggressiveness [5,44,46]. The generation of mice with a
targeted disruption of the 5-HTT gene allows to investigate the
consequences of its diminished or absent function. The loss of func-
tional changes results in more than 50 different phenotypic changes
such as increased anxiety [29,32,36,39] and reduced aggressive
behaviour ([31,49]; for a review see [62]).

Some of these alterations may be shaped by environmental

influences like early life adversity or negative experiences during
adulthood [6,14,29,36]. Up to now, gene by environment interac-
tion studies in 5-HTT knockout mice mainly focused on anxiety
and depression-related behaviours, while the study on aggressive
behaviour in these mice has largely been disregarded. Neverthe-
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ess, this should be of special interest, because several disorders,
ncluding depression, personality disorders or drug abuse, that are
ssociated with 5-HTT gene variants in humans display also some
orm of inappropriate aggression as one of their possible manifes-
ations [35]. Additionally, offensive aggression in rodents seems to
e systematically related to angry aggression in people [8].

One important environmental modulator of aggressive
ehaviour is the place where an agonistic interaction hap-
ens [2,40]. Residency status is a well-documented contextual
eterminant of a fight’s outcome [23]. In an individual’s own
erritory, agonistic interactions are in general more escalated
1,77], and in many species, including humans, the probability to
in a dispute is higher within the own territory or home range

19,42,59,68,87], a phenomenon called ‘home advantage’ [15] or
residence effect’ [41].

The aim of the present study was to investigate how 5-HTT geno-
ype and the environmental situation in which a contest takes place
hape the display of offensive aggression. Therefore, we investi-
ated the aggressive behaviour of male wildtype, heterozygous,
nd homozygous 5-HTT knockout mice towards a docile opponent
C3H male) in three different environmental situations: the own
erritory, which was the home cage of the 5-HTT male, the oppo-
ent’s territory, which was the home cage of the C3H male and a
eutral area, which was a cage unfamiliar to both contestants.

Based on the findings of Holmes et al. [31] and Lewejohann
t al. [49], we firstly expected genotype-dependent differ-
nces in offensive aggression with lowest levels in homozygous
-HTT knockout mice (hypothesis 1). We further hypothe-
ised that the environmental situation would have an influ-
nce on offensive aggression with higher levels in the own
erritory of the focal animals (hypothesis 2). Since it is
nown that the hypothalamic–pituitary–adrenocortical (HPA)
nd hypothalamic–pituitary–gonadal (HPG) axes as well as the
ympathetic-adrenomedullary system (SAS) can be involved in the
odulation of aggressive behaviour [9,56,66,75,81], we expected

orticosterone and testosterone concentrations (hyptheses 3 and
) as well as tyrosine hydroxylase activity (hypothesis 5) to differ
etween the genotypes and environmental situations.

. Methods

.1. Animals and housing conditions

5-HTT knockout mice [7] backcrossed into a C57BL/6J genetic background
or >10 generations were derived from our local stock. Breeding pairs consisted
f heterozygous 5-HTT knockout mice, resulting in wildtype, heterozygous, and
omozygous knockout offspring. To distinguish between the genotypes, genomic
NA was extracted from ear tissue. PCR amplicons of 225 bp (wildtypes), 272 bp

homozygous 5-HTT knockout mice) or both (heterozygotes) were identified by
garose gel electrophoresis.

In total, 114 male mice (36 wildtypes, 38 heterozygous 5-HTT knockout mice,
nd 40 homozygous 5-HTT knockout mice) were used for the behavioural investi-
ations (deviations from these sample sizes were due to technical reasons). After
eaning at day 21 ± 1 of age, the animals were housed in groups of two to five lit-

ermates and in some rare cases together with same-aged males from other litters
n standard cages (Macrolon cages type III, 38 cm × 22 cm × 15 cm). From day 60 ± 2
f age, i.e. 20 ± 2 days before beginning of behavioural testing, all focal animals were
oused singly in order to exclude the possible influence of social interactions with
onspecifics on offensive aggressive behaviour. This was important since homozy-
ous 5-HTT knockout mice are inferior to wildtype mice in direct confrontations
49]. Housing the mice in groups of littermates with mixed genotypes therefore
ould have resulted in subdominance of homozygous 5-HTT knockout mice what
ight have influenced their offensive aggression in the testing procedure.

18 males of the strain C3H (obtained from Harlan Winkelmann GmbH (Borchen,
ermany) at an age of 60 days) served as opponents for the assessment of social

nterest, offensive aggressive,and defensive behaviour (see below). At the time of

xperiments, the C3H mice were at least 75 days of age. Since C3H males show a
ery low rate of intermale aggression [37], it was possible to house them in groups of
hree individuals. These mice were used as opponents in confrontations with wild-
ype and 5-HTT knockout mice in their own territory and a neutral area. In cases
here C3H males served as residents in their own home cage, they were housed

ingly. Since social isolation is known to increase levels of aggression [57], we thus
esearch 219 (2011) 291–301

meant to increase the probability that C3H mice defended their own territory. All
experimental animals as well as the opponents were housed in standard polycar-
bonate cages type III with sawdust as bedding material (Allspan Höveler GmbH & Co.
KG, Langenfeld, Germany) and a paper towel. To guarantee that the wildtype, het-
erozygous, and homozygous 5-HTT knockout mice as well as the single housed C3H
mice recognized their home cages as own territories, the cages were not cleaned for
one week prior to testing. The housing room was maintained at a 12-h light/dark
cycle (lights on at 8.00 a.m.) and at a temperature of 22 ± 3 ◦C. Commercial mouse
diet (Altromin 1324, Altromin GmbH, Lage, Germany) and water were available
ad libitum. Under the housing conditions of our laboratory, mice of all three 5-HTT
genotypes regularly interact during the light phase, including aggressive encounters
[49]. Therefore, tests were conducted between 8.00 a.m. and 10.00 a.m.

The presented work complies with current regulations covering animal exper-
imentation in Germany and the EU (European Communities Council Directive
86/609/EEC). All experiments were announced to the local authority and were
approved by the ‘Animal Welfare Officer’ of the University of Muenster (reference
number: 8.87-50.10.46.08.151).

2.2. Health check

At day 40, a general health check using a standard protocol (see [20,48,72]) was
performed to guarantee that only healthy animals were included into the study and
that data were not the result of deteriorated physical conditions of the animals.
All animals passed the health check, indicating that no differences concerning gen-
eral health state, sensory functions, reflexes, and motor abilities existed between
wildtype, heterozygous, and homozygous 5-HTT knockout mice.

2.3. Experimental design

Social interest as well as offensive aggressive and defensive behaviour was
assessed in three different environmental situations. To this purpose, focal animals
of all three genotypes were confronted with an unknown (docile) C3H male for three
times (days 80 ± 2, 84 ± 2, and 88 ± 2) either in their home cages (own territory), in
a neutral cage (neutral area; unfamiliar to both contestants) or in the home cage
of the C3H male (opponent’s territory). Tests were conducted between 8 a.m. and
10 a.m.

To investigate stress reactivity of wildtype as well as heterozygous and homozy-
gous 5-HTT knockout mice non-invasively, faecal samples were collected before the
first and after the second confrontation for investigation of corticosterone metabo-
lites (CM) (see Section 2.5.1).

To determine plasma corticosterone and testosterone levels 5-HTT mice were
decapitated immediately after the last confrontation on day 88 ± 2 and trunk blood
was collected for further analysis (see Section 2.5.2). Additionally, the adrenal glands
(see Section 2.5.3) and the brain were dissected for further investigations.

2.4. Behavioural investigations

In order to assess the agonistic behaviour of the focal animals (5-HTT knockout
and wildtype mice) in their own territory, mice stayed in their home cage as resi-
dents and a C3H male was introduced into the cage as an intruder on three defined
days. Accordingly, to test the agonistic behaviour in the opponent’s territory, wild-
type as well as heterozygous and homozygous 5-HTT knockout mice were placed as
intruders in the home cage of a single housed C3H male. In both test situations the
paper towel was removed before starting the behavioural investigations. To gener-
ate a neutral area, both contestants were placed simultaneously into an unfamiliar
Macrolon cage type III containing sawdust, but no paper towel. Via a video camera
and an attached monitor, F.J. observed the confrontation and stopped it immedi-
ately when fighting was too escalated to prevent the mice from injury. That means,
during the first two confrontations the test lasted 10 min at most, but in some cases
it had to be stopped earlier. During the last confrontation, the two contestants were
separated after 5 min by a grid that was placed into the middle of the cage and stayed
in this cage the remaining 5 min. Thereby, it was guaranteed that blood as well as
tissue samples were collected at the same time point (10 min after the beginning of
the confrontation) for all individuals. Since not all animals attacked the opponent
within the 5 min timeframe, an accurate measurement of the latency to attack was
not possible in this last confrontation and was thus not determined.

To assess social interest, offensive aggressive and defensive behaviour, a total
number of eight behavioural patterns (for definition of behavioural patterns, see
Table 1) was recorded for the focal animals of all three genotypes by an experi-
enced observer (F.J.) who remained blind to genotype, using the software Observer
XT 8.0 (Noldus Information Technology BV, Wageningen, NL). In addition, three

behavioural patterns were recorded (see Table 1) to characterise the aggressiveness
of C3H opponents.

Focal animals and C3H mice could be easily distinguished by the different coat
colour. Data was collected using focal animal sampling and continuous recording.
To avoid a habituation effect of wildtype, heterozygous, and homozygous 5-HTT
knockout mice to one specific C3H opponent, C3H mice were used pseudo-randomly.
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Table 1
Description of behavioural patterns.

Behaviour Definition

Social interest behaviour
Approaching Direct movement towards another mouse at a

walking or running pace until the distance
between both mice is at most one body length.

Offensive aggressive behaviour
Following A mouse runs after another mouse, while the head

of the following mouse is directed to the backside
of the other individual. The maximum distance
between the animals is one body length. After
stopping in forward motion for at least three
seconds the behaviour starts again.

Chasing Following subsequent to an agonistic interaction
(attack, bite attack or escalated fight).

Attacka A mouse contacts the body of another mouse with
its mouth, making that mouse react with winced
movement of either single extremities, the tail or
the whole body. Attacks are single countable
events of low intensity. (Latency to attack: Time
that elapses until an attack is performed for the
first time by the focal animal. If no attack occurred,
the latency was set to the maximal testing time of
10 min.)

Bite Attacka A series of attacks with rushing and leaping at
another mouse. As the behaviour is of higher
intensity than an attack itself, single attacks are
not countable anymore.

Escalated fightinga Physical struggle between two mice which is
initiated by an attack and usually involves further
attacks, kicking, wrestling, and rolling over and
over. In-between, mice locked jaws. (A score was
given for each escalated fight from the onset until
the mice broke apart.)

Defensive behaviour
Defensive upright
posture

Rearing up on the hind paws and keeping still,
with the head up in the air, and the forepaws
rigidly stretched out towards another mouse.

Defensive sidewise
posture

Rearing up on the hind paws and keeping still, with
shoulder and flank presented to another mouse.

Note: For description of behavioural patterns see also [36,53,54]. The latency to
a
c
A

2

2
2
t
(
M
e
f
a
i
c
s

2
i
p
d
a
a
i
l

2
2
A
c
a
(
e

ttack is given as duration in seconds. For all other behavioural patterns frequen-
ies were recorded. For data analysis frequencies of Following, Chasing, Attack, Bite
ttack and Escalated fighting were added to the sum of offensive aggressive behaviour.
a These behavioural patterns were also assessed for the C3H opponents.

.5. Endocrinological investigations

.5.1. Corticosterone metabolites (CM)

.5.1.1. Sample collection. On days 79 ± 2 and 84 ± 2 (i.e. before the first confronta-
ion and after the second one), faecal samples voided between 4 p.m. and 8 p.m
that is 8–12 h after the confrontation) were collected by placing mice in a standard

acrolon cage with fresh bedding. The time frame was chosen according to Touma
t al. [84], who showed that a peak of corticosterone metabolites can be found in
aeces 8–12 h after the exposure to a stressor. All faeces were frozen at −20 ◦C until
ssayed for corticosterone metabolites (corticosterone is the major glucocorticoid
n mice [82]). This procedure resembled the routinely performed transfer to clean
ages for animal maintenance and thus was not considered to be associated with
tress possibly corrupting subsequent samples.

.5.1.2. Hormone analysis. The collected faecal samples were analysed for
mmunoreactive corticosterone metabolites (CM) using an established 5�-
regnane-3�,11�,21-triol-20-one enzyme-immunoassay (EIA). Details regarding
evelopment, biochemical characteristics, and physiological validation of this assay
re described in [84,85]. Before EIA analysis, the faecal samples were homogenised
nd aliquots of 0.05 g were extracted with 1 ml of 80% methanol. The intra- and
nter-assay coefficients of variation were 9.1% and 14.3%, respectively. Samples of
ess than 0.05 g of faeces were excluded from data analysis.

.5.2. Corticosterone/testosterone
.5.2.1. Blood sampling. At day 88 ± 2, the animals were anaesthetized (Forene,
bbott GmbH, Wiesbaden, Germany) and decapitated immediately after the last
onfrontation between 8.00 a.m. and 10.00 a.m. Trunk blood was collected in hep-
rinised capillaries. After separation of cellular constitutions by centrifugation
5 min at 13,000 rpm), plasma was frozen at −20 ◦C until analysis. To avoid stress
ffects of the handling procedures on the investigated endocrine parameters, blood
esearch 219 (2011) 291–301 293

sampling was performed within at most 3 min after stopping the 10 min of testing
[24,30,82].

2.5.2.2. Hormone analysis. For the analysis of plasma corticosterone concentrations,
blood samples were analysed using an established DEMEDITEC Enzyme Immunoas-
say Kit (EIA, DE4164, Demeditec Diagnostics GmbH, Kiel, Germany). All standards,
samples, and controls were run in duplicate concurrently. Samples were diluted 1:5,
while controls were diluted 1:50. The intra- and inter-assay coefficients of variation
for the corticosterone analysis were 3.3% and 6.0%, respectively. Results were only
accepted if within the range of 1.44–69.17 ng/ml.

To determine plasma testosterone concentrations, blood samples were anal-
ysed using an established DEMEDITEC Enzyme Immunoassay Kit (EIA, DE1559,
Demeditec Diagnostics GmbH, Kiel, Germany). All standards, samples, and controls
were run in duplicate concurrently. Samples as well as controls were not diluted.
The intra- and inter-assay coefficients of variation for the testosterone were 5.7%
and 7.2%, respectively. Samples with testosterone concentrations <0.2 ng/ml were
excluded from further analysis.

2.5.3. Adrenal tyrosine hydroxylase (TH)
Adrenal glands were dissected, transferred to a 1.5 ml reaction tube containing

Tris–HCl buffer (pH 7.2), quick-frozen and then stored at −70 ◦C. For analysis of the
TH activity, the adrenals were gently defrosted and homogenized in 150 �l 5 mM
Tris–HCl buffer (pH 7.2). After centrifugation (14,000 rpm) for 30 min at 4 ◦C, TH was
determined in the supernatant by means of a radioenzymatic method according to
the method of [64] with slight modifications as described in ([90]; see also [38]).

2.6. Statistical analysis

All data sets were checked for normal distribution by a descriptive analysis of
the histogram as well as by the Kolmogorov–Smirnov test. If data did not signifi-
cantly deviate from a normal distribution, it was analysed using a two-way ANOVA
with genotype and environmental situation as between subject factors. In cases of
significance sequential Bonferroni-corrected independent-samples t-tests followed.

If data was not normally distributed and could not be transformed to a normal
distribution, non-parametric statistical tests were used. To analyse three indepen-
dent samples, the Kruskal–Wallis H-test was performed. In cases of significance, two
independent samples were compared using the Mann–Whitney U-test. In cases of
multiple Mann–Whitney U-tests, subsequent sequential Bonferroni-correction was
performed.

For analysis of corticosterone metabolites a Repeated Measures ANOVA was per-
formed with genotype and environmental situation as independent factors, followed
by sequential Bonferroni corrected paired samples t-tests. Statistical significance
was set at p < 0.05. All tests were calculated using the software package SPSS (SPSS
for Windows, Release 11.5.0., 2002).

3. Results

3.1. Agonistic behaviour (confrontation I)

In all cases, focal animals approached the opponent, indi-
cating their social interest. Afterwards, their behaviour changed
into offensive aggression. Therefore, we first present frequencies
of approaching, followed by the offensive aggressive behaviour
(latency to attack and sum of offensive aggressive behaviour). After
that, we describe the defensive behaviour of wildtype, heterozy-
gous, and homozygous 5-HTT knockout males. Finally, the docile
C3H opponents are characterised. To increase the readability of this
paper only p-values of the main effects are presented in the text,
wheras F-values and �2-values are given in Table 2.

3.1.1. Males of all three 5-HTT genotypes
3.1.1.1. Social interest. Concerning the frequency of approaching
(Fig. 1), no significant main effect of the 5-HTT genotype was
detectable (p = 0.348). Nonetheless, the ANOVA revealed a main
effect of the environmental situation (p < 0.001), which is being
confronted with an opponent either in the own territory, in the
opponent’s territory or in a neutral area. Post-hoc analyses showed
significantly lower levels of approaching in the opponent’s terri-

tory for wildtype and homozygous 5-HTT knockout mice compared
to the own territory (t = 2.208/t = 3.806; p = 0.038/p = 0.001) and
the neutral area (t = 5.172/t = 5.412; both p < 0.001). In addition,
a significant interaction of the environmental situation and the
5-HTT genotype was found (p = 0.006). While heterozygous indi-
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Table 2
Confrontation I: effects of genotype (G) and environmental situation (E) as well as gene by environment interaction (G × E).

Behaviour Effect of
Genotype (G) Environmental situation (E) G × E

Approaching F(2,102) = 1.067; p = 0.348 F(2,102) = 15.372; p < 0.001 F(4,102) = 3.887; p = 0.006
Latency to attack F(2,102) = 9.683; p < 0.001 F(2,102) = 1.419; p = 0.247 F(4,102) = 1.053; p = 0.384
Sum of offensive aggressive behaviour F(2,102) = 3.467; p = 0.035 F(2,102) = 8.417; p < 0.001 F(4,102) = 2.996; p = 0.022
Following* �2 = 0.293; df = 2; p = 0.864 �2 = 35.532; df = 2; p < 0.001 –
Chasing* �2 = 3.325; df = 2; p = 0.190 �2 = 10.062; df = 2; p = 0.007 –
Attack* F(2,102) = 5.299; p = 0.006 F(2,102) = 2.711; p = 0.071 F(4,102) = 1.509; p = 0.205
Bite Attack* �2 = 1.203; df = 2; p = 0.548 �2 = 3.297; df = 2; p = 0.192 –
Escalated fighting* F(2,102) = 4.543; p = 0.013 F(2,102) = 0.735; p = 0.482 F(4,102) = 1.665; p = 0.164
Defensive upright posture �2 = 0.423; df = 2; p = 0.809 �2 = 8.694; df = 2; p = 0.013 –
Defensive sidewise posture �2 = 0.013; df = 2; p = 0.994 �2 = 20.234; df = 2; p < 0.001 –
Attack initiated by C3H �2 = 1.428; df = 2; p = 0.490 �2 = 34.658; df = 2; p < 0.001 –
Bite Attack initiated by C3H �2 = 0.175; df = 2; p = 0.916 �2 = 10.012; df = 2; p = 0.007 –
Escalated fighting initiated by C3H �2 = 0.577; df = 2; p = 0.749 �2 = 22.766; df = 2; p < 0.001 –

Statistics: ANOVA, Kruskal-Wallis H-test; Grey: p < 0.05; *: Following, Chasing, Attack, Bite Attack and Escalated fighting are included in the parameter sum of offensive
aggressive behaviour. Note: In case of non-parametric statistics no G × E interactions can be given.
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Fig. 2. Latency to attack. Data are shown as mean + SEM. +/+, 5-HTT wildtype mice;
+/−, heterozygous 5-HTT knockout mice; −/−, homozygous 5-HTT knockout mice.
Sample sizes: N = 11–14; *: p < 0.05; **: p < 0.01.
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iduals did not differ between the three environmental situations,
he effects for wildtype and homozygous knockout mice were as
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.1.1.2. Offensive aggressive behaviour. Concerning the latency to
ttack the opponent (Fig. 2), the ANOVA revealed a main effect
f genotype (p < 0.001). Post-hoc analyses showed that this effect
ould only be found in the opponent’s territory and in the neutral
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The sum of offensive aggressive behaviour consists of the added
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ated fighting, chasing and bite attack (for a separate statistical
nalysis see Table 2). Concerning the sum of offensive aggressive

ehaviour (Fig. 3), a significant main effect of the 5-HTT geno-
ype was detectable (p = 0.035). Post hoc analyses indicated that
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Fig. 3. Sum of offensive aggressive behaviour (following, chasing, attack, bite attack,
and escalated fighting). Data are shown as mean + SEM. +/+, 5-HTT wildtype mice;
+/−, heterozygous 5-HTT knockout mice; −/−, homozygous 5-HTT knockout mice.
Sample sizes: N = 11–14; *: p < 0.05; ***: p < 0.001.
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n the opponent’s territory, homozygous 5-HTT knockout mice
ere less aggressive than wildtypes and heterozygous knockout
ice (t = 2.976/t = 2.489; p = 0.007/p = 0.025). In the neutral area, no

ifferences between the genotypes could be found. The ANOVA
evealed also a significant main effect of the environmental sit-
ation (p < 0.001) on the sum of offensive aggressive behaviour.
ost hoc analyses indicated more offensive aggressive behaviour
or heterozygous and homozygous 5-HTT knockout mice in the
wn territory than in the opponent’s territory (t = 2.071/t = 5.238;
= 0.050/p < 0.001). Heterozygous mice also showed more aggres-

ive behaviour in their own territory than in the neutral area
t = 2.350; p = 0.034). Finally, homozygous 5-HTT knockout mice
ere less aggressive in the opponent’s territory than in the neu-

ral area (t = 3.558; p = 0.002). In addition, a significant interaction
f the environmental situation and the 5-HTT genotype was found
p = 0.022). While heterozygous and homozygous 5-HTT knock-
ut mice differed concerning their levels of offensive aggressive
ehaviour between the three environmental situations, the fre-
uency of aggressive behaviour of wildtype mice did not vary
ignificantly, irrespective of whether the confrontation took place
n their own or in the opponent’s territory or in the neutral area.

.1.1.3. Defensive behaviour. In general, very few defensive pos-
ures were displayed by the focal mice. Nevertheless, the analyses of
he defensive upright posture and defensive sidewise posture (Table 2)
evealed a significant main effect of the environmental situation
p = 0.013/p < 0.001) with most defensive behaviour being per-
ormed in the opponent’s territory. There was no main effect of
enotype and no significant gene by environment interaction.

.1.2. C3H males
Attacks initiated by C3H males (Fig. 4) rarely occurred and were

nvironment dependent (p < 0.001). Post hoc analyses indicated
hat significantly more attacks were performed towards heterozy-
ous and homozygous 5-HTT knockout mice in the opponent’s
erritory (home cage of the C3H mice) compared with the own terri-
ory of the focal animals (U = 18.500/U = 14.500; p = 0.001/p < 0.001).
imilarly, the C3H males showed more attacks towards homozy-
ous 5-HTT knockout males in the opponent’s territory than in the
eutral area (U = 7.000; p < 0.001). Interestingly, the frequency of
3H attacks towards 5-HTT wildtype mice did not differ between

he three environmental situations. Additionally, no main effect of
he 5-HTT genotype was found (p = 0.490). These results are consis-
ent with the data for the behavioural patterns bite attack initiated
y C3H male and escalated fighting initiated by C3H male which can
e seen in Table 2.

able 3
onfrontation II: Effects of genotype (G) and environmental situation (E) as well as gene b

Behaviour Effect of
Genotype (G)

Approaching F(2,99) = 0.978; p = 0.380
Latency to attack F(2,99) = 4.534; p = 0.013
Sum of offensive aggressive behaviour F(2,99) = 2.676; p = 0.074
Following* �2 = 0.070; df = 2; p = 0.966
Chasing* �2 = 6.080; df = 2; p = 0.048
Attack* F(2,99) = 2.419; p = 0.094
Bite Attack* �2 = 3.883; df = 2; p = 0.144
Escalated fighting* �2 = 2.896; df = 2; p = 0.235
Defensive upright posture �2 = 0.364; df = 2; p = 0.834
Defensive sidewise posture �2 = 0.737; df = 2; p = 0.692
Attack initiated by C3H �2 = 4.956; df = 2; p = 0.084
Bite Attack initiated by C3H �2 = 5.823; df = 2; p = 0.054
Escalated fighting initiated by C3H �2 = 5.275; df = 2; p = 0.072

tatistics: ANOVA, Kruskal-Wallis H-test; Grey: p < 0.05; *: Following, Chasing, Attack,
ggressive behaviour. Note: In case of non-parametric statistics no G × E interactions can b
Fig. 4. Attack initiated by C3H male. Data are shown as mean + SEM. +/+, 5-HTT
wildtype mice; +/−, heterozygous 5-HTT knockout mice; −/−, homozygous 5-HTT
knockout mice. Sample sizes: N = 11–14; **: p < 0.01; ***: p < 0.001.

3.2. Agonistic behaviour (confrontations II, and III)

The analysis of the behaviour of wildtype and 5-HTT knockout
mice as well as of C3H males in a second and third confrontation
revealed that the pattern of differences of main effects concerning
genotype and environmental situation found in the first confronta-
tion persisted over time. To enhance the readability of this paper,
we will only refer to the main effects of the analysis and give
the p-values in the text. F-values and and �2-values are given in
Tables 3 and 4.

3.2.1. Males of all three 5-HTT genotypes
3.2.1.1. Social interest. Concerning approaching, the significant
main effect of the environmental situation detected in the first
confrontation persisted also in the second and third one (both:
p < 0.001). In contrast, the significant interaction of the 5-HTT geno-
type and the environmental situation in the first confrontation was
shown only by a trend in confrontation 2 (p = 0.095), and it was not
detectable in the third one at all (p = 0.717).
3.2.1.2. Offensive aggressive behaviour. The analysis of the latency
to attack in the second confrontation revealed a main effect of
the 5-HTT genotype (p = 0.013) that was also found in the first
confrontation. In confrontation II, an effect of the environmental
situation was detected that was absent in the first trial (p < 0.001).

y environment interaction (G × E).

Environmental situation (E) G × E

F(2,99) = 27.440; p < 0.001 F(4,99) = 2.037; p = 0.095
F(2,99) = 9.023; p < 0.001 F(4,99) = 1.255; p = 0.293
F(2,99) = 11.020; p < 0.001 F(4,99) = 0.765; p = 0.551
�2 = 21.788; df = 2; p < 0.001 –
�2 = 3.810; df = 2; p = 0.149 –
F(2,99) = 6.099; p = 0.003 F(4,99) = 0.922; p = 0.454
�2 = 6.777; df = 2; p = 0.034 –
�2 = 18.702; df = 2; p < 0.001 –
�2 = 33.036; df = 2; p < 0.001 –
�2 = 23.717; df = 2; p < 0.001 –
�2 = 34.605; df = 2; p < 0.001 –
�2 = 11.702; df = 2; p = 0.003 –
�2 = 18.183; df = 2; p < 0.001 –

Bite Attack and Escalated fighting are included in the parameter sum of offensive
e given.
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Table 4
Confrontation III: effects of genotype (G) and environmental situation (E) as well as gene by environment interaction (G × E).

Behaviour Effect of
Genotype (G) Environmental situation (E) G × E

Approaching F(2,92) = 1.572; p = 0.213 F(2,92) = 19.658; p < 0.001 F(4,92) = 0.525; p = 0.717
Latency to attack Not determined Not determined Not determined
Sum of offensive aggressive behaviour F(2,92) = 4.818; p = 0.010 F(2,92) = 5.020; p = 0.009 F(4,92) = 0.947; p = 0.440
Following* �2 = 1.929; df = 2; p = 0.381 �2 = 18.740; df = 2; p < 0.001 –
Chasing* �2 = 4.643; df = 2; p = 0.098 �2 = 3.432; df = 2; p = 0.180 –
Attack* �2 = 8.524; df = 2; p = 0.014 �2 = 6.532; df = 2; p = 0.038 –
Bite Attack* �2 = 3.937; df = 2; p = 0.140 �2 = 11.692; df = 2; p = 0.003 –
Escalated fighting* �2 = 9.395; df = 2; p = 0.009 �2 = 2.872; df = 2; p = 0.238 –
Defensive upright posture �2 = 0.452; df = 2; p = 0.798 �2 = 12.604; df = 2; p = 0.002 –
Defensive sidewise posture �2 = 0.005; df = 2; p = 0.997 �2 = 7.872; df = 2; p = 0.020 –
Attack initiated by C3H �2 = 2.724; df = 2; p = 0.422 �2 = 8.741; df = 2; p = 0.006 –
Bite Attack initiated by C3H �2 = 0.953; df = 2; p = 0.621 �2 = 5.195; df = 2; p = 0.074 –
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Escalated fighting initiated by C3H �2 = 2.880; df = 2; p = 0.866

tatistics: ANOVA, Kruskal-Wallis H-test; Grey: p < 0.05; *: Following, Chasing, At
ggressive behaviour. Note: In case of non-parametric statistics no G × E interactions

n both confrontations, no genotype by environment interaction
xisted (p = 0.293).

The significant main effect of the 5-HTT genotype for the sum
f offensive aggressive behaviour in the first confrontation was con-
rmed in the third confrontation (p = 0.01) and is supported by a
rend in the second one (p = 0.074). Additionally, the main effect
f the environmental situation in the first confrontation was con-
rmed in confrontation 2 and 3 (p < 0.001/p = 0.009).

.2.1.3. Defensive behaviour. The analysis of the defensive upright
osture in the second and third confrontation was in line with
he first one: although the environmental situation influenced the
ehavioural patterns significantly (p < 0.001/p = 0.002), no effect of
enotype was detectable (p = 0.834/p = 0.798).

.2.2. C3H males
C3H males behaved rather consistently in all three confronta-

ions and were not influenced by the 5-HTT genotype but by the
nvironmental situation (Tables 3 and 4).

.3. Endocrinological investigations

.3.1. Corticosterone metabolites (CM)
The analysis of faecal samples collected before the first

nd after the second confrontation with a conspecific revealed
significant main effect of confrontation, that is, CM con-

entrations were higher after repeated confrontations with a
onspecific (F(1,100) = 951.009, p < 0.001; Fig. 5A). Post-hoc com-
arisons showed that wildtype mice confronted with a C3H male

n the own as well as in the opponent’s territory displayed a
ignificant increase in CM concentrations (t = −2.788/t = −2.579;
= 0.018/p = 0.027). In heterozygous mice, this effect was only
etectable in the neutral area (t = −2.822; p = 0.017). However, in
omozygous 5-HTT knockout mice, no significant increase in CM
oncentrations was detectable (t = −0.364/t = −1.974/t = −0.832;
= 0.722/p = 0.072/p = 0.423). Additionally, the Repeated Measures
NOVA detected no effect of genotype, environmental situation or
n interaction of these two parameters (environmental situation:
(2,100) = 0.779, p = 0.462; genotype: F(2,100) = 0.131, p = 0.878;
nvironmental situation*genotype: F(2,100) = 0.515, p = 0.725).

.3.2. Plasma corticosterone (CORT)

The analysis of CORT concentrations immediately after the last

onfrontation revealed a main effect of the environmental sit-
ation (F(2,102) = 13.453, p < 0.001; Fig. 5B) with lowest stress
ormone concentrations in the own territory. In wildtype and
eterozygous 5-HTT knockout mice, significantly higher CORT con-
�2 = 0.130; df = 2; p = 0.937 –

Bite Attack and Escalated fighting are included in the parameter sum of offensive
e given.

centrations were found in the neutral area than in their own
territories (t = −3.159/t = −2.672; p = 0.005/p = 0.016). Additionally,
wildtypes showed significant higher CORT concentrations in the
neutral area than in the opponent’s territory (t = 2.529; p = 0.019).
Strikingly, for homozygous 5-HTT knockout mice, CORT concentra-
tions were nearly the same in all three environmental situations
(t = −1.767/t = −2.046/t = −0.223; p = 0.093/p = 0.058/p = 0.825).

3.3.3. Plasma testosterone (TEST)
The analysis of TEST concentrations immediately after the

last confrontation revealed no effects of the environmental sit-
uation (F(2,98) = 0.272, p = 0.762; Fig. 6) or the 5-HTT genotype
(F(2,98) = 2.081, p = 0.130). Also, no interaction between these two
parameters was detectable (F(4,98) = 1.850, p = 0.125).

3.3.4. Adrenal tyrosine hydroxylase (TH)
The analysis of TH activity immediately after the last confronta-

tion revealed a main effect of genotype (F(2,71) = 5.714, p = 0.005;
Fig. 7), with higher values in heterozygous 5-HTT knockout mice in
all three environmental situations. Post-hoc analysis revealed that
TH activity was significantly different between heterozygous and
homozygous mice in the neutral area and the opponent’s territory
(t = 2.324/t = 2.381/t = 0.037; p = 0.031). However, this effect did not
remain significant after Bonferroni correction. Neither an effect of
the environmental situation (p = 0.850) nor a gene by environment
interaction (p = 0.840) was detectable.

4. Discussion

The overall aim of the present study was to investigate how
the 5-HTT genotype and the environmental situation in which a
confrontation takes place shape the display of offensive aggres-
sive behaviour. To enhance the motivation of the focal animals to
perform offensive aggression as well as to avoid a domination of
their behaviour by the opponent, males of the docile strain C3H
were chosen as contestants. Indeed, C3H mice displayed overall
very low levels of aggressive behaviour towards the focal indi-
viduals that were comparable between mice of all three 5-HTT
genotypes. Accordingly, wildtype, heterozygous, and homozygous
5-HTT knockout mice very rarely displayed defensive behaviour
towards the opponents. Using this design, we identified three dif-
ferent phases of the contest situation: The first was the phase of

information gathering that depended on the environmental situa-
tion, but not on the individual’s genotype. In the second phase, mice
decided how quickly to attack the opponent, which depended on
the genotype, but not on the environmental situation. The third
phase was the physical interaction, which was influenced by the
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ig. 5. Activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. Concentr
oncentrations (B) were analysed. Data are shown as mean + SEM. +/+, 5-HTT wild
ice. b, before confrontation; a, after confrontation. Sample sizes: N = 11–14; *: p <

-HTT genotype, the environmental situation and a complex inter-
lay of genotype and environment. A comparison of data from the
hree confrontations showed that these observed effects were pre-
ominantly stable and consistent over time.

.1. Behaviour
.1.1. Information gathering
Irrespective of their genotypes, all focal animals showed nearly

he same frequency of approaching the contestant in all three
nvironmental situations, thereby gaining olfactory, auditory, and
actile information about him [60,63]. This stands in line with
of corticosterone metabolites in the faeces (A) as well as plasma corticosterone
ice; +/−, heterozygous 5-HTT knockout mice; −/−, homozygous 5-HTT knockout

data from other studies finding also no differences in social inter-
est behaviour and social exploration between the three genotypes
([31,49]; but, see also: [39,61]). In contrast, levels of social inter-
est behaviour strongly depended on the environmental situation
in which a contest took place. Wildtypes and homozygous 5-HTT
knockout mice approached the contestant less frequently in the
opponent’s territory compared with the own territory and the neu-

tral area, which is in general not surprising for territorial mammals
like mice [52,71,73]. A novel environment with an unfamiliar male
opponent means a potential risk for the intruding individual of
being attacked and injured by the territory holder. Being cautious
and approach the opponent less frequently can therefore minimize
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ig. 6. Plasma testosterone concentrations. Data are shown as mean + SEM. +/+, 5-
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-HTT knockout mice. Sample sizes: N = 9–14.

he potential costs of fighting [34]. In addition, the own territory
as a probably high yield of food or mates, making it reasonable

rom a socio-biological perspective to provide most energy for its
efence [23,70]. To be most effective in doing so, one should be
lert right from the beginning of a contest situation, a fact that is
eflected here by the higher frequency of approaching in the own
erritory.

.1.2. Decision how quickly to attack the opponent
For the latency to attack the opponent, a significant main effect of

he 5-HTT genotype was found. In particular, homozygous 5-HTT
nockout mice showed significantly longer attack latencies than
ildtypes and heterozygotes when confronted with a C3H male

n both, the neutral area and the opponent’s territory, thereby con-
rming hypothesis 1. Strikingly, in the own territory, no differences
etween the genotypes were detected at all.
Behavioural ecological models include assumptions about the
evel of information a contestant has about the costs (C) and benefits
B) of possible behavioural options in a contest [34]. Of particu-
ar relevance for the interpretation of behavioural data presented
ere is that the behaviour in a contest can be influenced by the
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individual’s perception of these costs [34]. If potential fighting costs
[25,27,65] are perceived as rather high, e.g. in terms of the prob-
ability of injury, individuals should retreat from a contest sooner
or should not engage in it at all (reviewed in: [34]). That means,
the B/C ratio is relatively low and accordingly, the threshold for
eliciting aggressive behaviour is high [65]. In contrast, if potential
fighting costs are perceived as rather low (higher B/C ratio), indi-
viduals should engage in a contest situation or prolong it (reviewed
in: [34]). In such a situation, the threshold for eliciting aggressive
behaviour is relatively low. It seems reasonable to assume that the
perception of fighting costs is influenced by individual levels of
anxiety. That means: Individuals with generally higher levels of
anxiety, as it is the case in 5-HTT knockout mice [29,32,36], tend
to perceive the potential fighting costs as higher than individuals
with lower levels of anxiety, leading to a higher threshold for elic-
iting aggressive behaviour and consequently to significantly longer
attack latencies. If a homozygous 5-HTT knockout mouse is placed
into an unfamiliar environment (neutral area and opponent’s ter-
ritory), this probably intensifies the inborn differences in anxiety.
Additionally, in the opponent’s territory, the behaviour of the C3H
mice was a little more offensive than in the other environmental
situations (indicated by a statistical main effect), which probably
enhanced levels of anxiety, too. Consistently, homozygous 5-HTT
knockout mice showed significantly longer attack latencies in the
neutral area and opponent’s territory compared with wildtypes
and heterozygotes. Interestingly, being in the own territory seemed
to compensate these differences in anxiety, probably because of a
stress-buffering effect of the familiar environment ([89]; see Sec-
tion 4.2), and caused the homozygous 5-HTT knockout mice to
behave in nearly the same way as wildtypes and heterozygotes.

Holmes et al. [31] found longer attack latencies in homozygous
5-HTT knockout mice compared to wildtype controls when the
mice were confronted in their own home cages with an intrud-
ing conspecific. At first glance, this finding stands in contrast to
our data. It is known, however, that the behaviour in an aggressive
encounter depends on the type of opponent [10,21,55,57]. There-
fore, the named differences are probably due to the fact that Holmes
et al. [31] used opponents from a more aggressive strain (DBA/2J)
than we did [37] inducing more anxiety in the homozygous 5-HTT
knockout mice and thus increasing the threshold for aggressive
behaviour.

4.1.3. Physical interaction
The sum of offensive aggressive behaviour was influenced by

the 5-HTT genotype and the environmental situation as well as
by a genotype by environment interaction. Concerning genotype,
it was found that homozygous 5-HTT knockout mice performed
significantly less offensive aggressive behaviour in the opponent’s
territory compared with wildtype and heterozygous mice, which
confirms hypothesis 1. These results stand in line with the dis-
cussion about differences in inborn levels of anxiety. Additionally,
one cannot exclude that genotype-dependent variations in levels
of aggression were also influenced by a differential response to the
factor single housing [57].

Concerning the environmental situation, generally less offen-
sive aggression was displayed outside the own territory, thereby
underlying the discussion about socio-biological reasons presented
before and confirming hypothesis 2.

For the discussion of our results, the genotype by environment
interaction is of particular interest. In general, such an interaction
means that a genotype effect is influenced by the environmental

situation or, vice versa, that the influence of an environmental sit-
uation is modified by genotype. Several studies in 5-HTT knockout
mice show that genotype by environment interactions are essen-
tially involved in the display of anxiety-like behaviour [14,29,36].
In the present study, we demonstrate for the first time that geno-
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ype by environment interactions are also crucial for bringing about
ffensive aggressive behaviour: In sum, homozygous and heterozy-
ous 5-HTT knockout mice displayed less offensive aggression
utside the own territory, whereas wildtypes behaved nearly the
ame in all three environmental situations.

A central insight derived from the present study is: The level
f offensive aggression displayed is influenced by the inborn level
f anxiety and the anxiety-inducing effect of the environmental
ituation. As a consequence, mice of the three 5-HTT genotypes dif-
ered in their decision rules for the display of offensive aggression
owards a docile opponent: In wildtypes, the decision to perform
ffensive aggression does not seem to be influenced by environ-
ental cues. Irrespective of the environmental situation in which
contest took place or of the opponent’s behaviour, they displayed
early the same level of offensive aggression. In heterozygous
ice, the decision rule depends on being in the own territory or

n an unfamiliar environment. They showed highest amounts of
ffensive aggressive behaviour in the own territory. Aggression,
owever, did not differ between the neutral area and the oppo-
ent’s territory. In homozygous 5-HTT knockout mice, the decision
o display offensive aggression is influenced by both the envi-
onmental situation and the opponent’s behaviour. Thus, highest
mounts of aggression were displayed in the own, lowest levels
n the opponent’s territory. In the neutral area an intermediate
mount of offensive aggression was found.

We do not assume one decision rule to be better than the other,
ut rather think them to be context-dependent. In future studies, it
ill therefore be especially interesting to elucidate which decision

ule is advantageous in which environmental condition.

.2. Endocrinology

The two major components of the stress system are
he hypothalamic-pituitary-adrenocortical (HPA) axis and the
ympathetic–adrenomedullary system (SAS) [4,11,86]. The activa-
ion of each of these systems plays a major role in adjusting an
ndividual to social and non-social stressors by providing the organ-
sm with energy and shifting it into a state of heightened reactivity
77].

Concerning the HPA axis, we monitored glucocorticoid secretion
efore the first and after the second confrontation non-invasively
y measuring faecal corticosterone metabolites (CM). Consistent
ith numerous findings in a variety of species [74,78,86], the sta-

istical main effect of the confrontation itself indicated that CM
oncentrations increased significantly due to repeated fighting irre-
pective of genotype or environmental situation. The magnitude of
he stress response seems to vary with certain environmental cir-
umstances as shown by the corticosterone concentrations from
lood samples (CORT) taken immediately after the last confronta-
ion. Namely, the data revealed a significant main effect of the
nvironmental situation, generally with lowest levels of stress in
he own territory of the focal animals, thereby confirming hypoth-
sis 3. This finding might be due to some kind of stress buffering
ffect by the familiar environment [89]. The fact that no influence
f the 5-HTT genotype on CM and CORT concentrations was found
tands in line with findings of Jansen et al. [36] and Tjurmina et al.
[83]; but, see also: [43,50]). The difference in CM and CORT con-
entrations concerning the role of the environmental situation on
tress hormone secretion might be due to the differences in time
oint of sampling and the sampling intervals.

Concerning the SAS, we investigated tyrosine hydroxylase (TH)

ctivity after the last confrontation and found a significant main
ffect of the 5-HTT genotype with generally highest levels in het-
rozygous 5-HTT knockout mice. This is consistent with hypothesis
and might, in combination with other factors, explain the high lev-
ls of offensive aggression in heterozygous 5-HTT knockout mice
esearch 219 (2011) 291–301 299

in their own territory (see Section 4.3). It is known that 5-HT can
influence catecholamine release by direct actions in the adrenal
medulla [83]. Furthermore, 5-HTT binding sites have been identi-
fied in the rat adrenal medulla, and epinephrine (EPI)-synthesizing
cells accumulate and store 5-HT via the 5-HTT and the vesicular
monoamine transporter [79]. A study by Tjurmina et al. [83] inves-
tigated the activity of the SAS in the three 5-HTT genotypes as well
and pointed towards an effect of genotype with homozygous 5-
HTT knockout mice displaying the highest EPI concentrations after
immobilisation stress. At first sight, these results seem to be con-
tradictory to the data of the present study. However, whereas EPI
indicates the acute response to a given stressor, TH activity rather
reflects the basal activity of the animals’ SAS [18,26,38,76,77].

Testosterone (TEST) is an important mediator of aggressive
behaviour [13,16,23,51,66,74]. Surprisingly, the analysis of TEST
concentrations after the last confrontation revealed neither an
effect of the 5-HTT genotype or the environmental situation nor
an interaction of these two factors, which contradicts hypothe-
sis 4. This is possibly due to two reasons. Firstly, blood sampling
was performed within about 10 min after the beginning of the last
confrontation. Maybe a longer time is required to detect a signif-
icant change in TEST concentrations. Secondly, the confrontation
of wildtype, heterozygous, and homozygous 5-HTT knockout mice
with a docile C3H opponent possibly led to some kind of win-
ner experience in all focal animals. Winning is known to increase
TEST concentrations in many vertebrates [33,69,74]. Probably, an
increase in TEST concentration led to the same result in all three
environmental situations, therefore making it impossible to detect
any differences in these hormone concentrations after the last of
three aggressive encounters. Thus, possible differences in basal
TEST concentrations between the genotypes may be concealed.

4.3. Risk profile for the display of inadequately high aggression

There have been attempts to identify risk factors causing high
aggression, antisocial behaviour, and violence (for review see [3]).
Arregi et al. [3], for example, assume the combination of dom-
inance, high serum androgen concentrations, low adrenocortical
activity, and a reduced serotonergic activity in the CNS to be a criti-
cal risk profile, making the display of offensive aggression likely. In
the present study, heterozygous 5-HTT knockout mice displayed
in their own territory a level of offensive aggressive behaviour
towards the docile opponents that is, from a socio-biological per-
spective, in its intensity a waste of time and energy [80]. These
data point towards a risk profile for exaggeratedly high aggression,
because, in accordance with Arregi and colleagues [3], heterozy-
gous 5-HTT knockout mice combine the traits dominance, low
adrenocortical acivity as derived from basal CM concentrations
before the first confrontation, possibly increased TEST titres (see
Section 4.2), and a reduced intraneuronal serotonergic activity [7]
in the own territory. Additionally, the present study points to one
more key factor that possibly might bring about high aggression
scores: a high activity of the SAS reflected by a high activity of the
adrenal enzyme tyrosine hydroxylase [76].

5. Conclusion

Our data show that the amount of offensive aggression dis-
played during a contest depended on the 5-HTT genotype, the
environmental situation in which a contest took place, and a com-

plex interaction of 5-HTT genotype and environment. It is likely
that, due to their varying genetic predisposition for anxiety, mice
of the three genotypes were differentially affected by the aver-
siveness of the respective venue, which influenced their decision
to display offensive aggression. As a consequence, the amount of
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