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Glucocorticoids coordinate changes 
in gut microbiome composition 
in wild North American red 
squirrels
Lauren Petrullo1*, Tiantian Ren2, Martin Wu2, Rudy Boonstra3, Rupert Palme4, Stan Boutin5, 
Andrew G. McAdam6 & Ben Dantzer1,7*

The gut microbiome impacts host health and fitness, in part through the diversification of gut 
metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut 
microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a 
negative consequence of increased GCs. However, given that ecological factors like food availability 
and population density may independently influence both GCs and microbial diversity, understanding 
how these factors structure the GC-microbiome relationship is crucial to interpreting its significance 
in wild populations. Here, we used an ecological framework to investigate the relationship between 
GCs and gut microbiome diversity in wild North American red squirrels (Tamiasciurus hudsonicus). As 
expected, higher GCs predicted lower gut microbiome diversity and an increase in metabolic taxa. 
Surprisingly, but in line with prior empirical studies on wild animals, gastrointestinal pathogens 
decreased as GCs increased. Both dietary heterogeneity and an upcoming food pulse exhibited direct 
effects on gut microbiome diversity, whereas conspecific density and reproductive activity impacted 
diversity indirectly via changes in host GCs. Our results provide evidence of a gut–brain axis in wild 
red squirrels and highlight the importance of situating the GC-gut microbiome relationship within an 
ecological framework.

The intimate symbiosis between animals and their microbiomes has become a major area of focus for ani-
mal behavior, ecology, and evolution research over the last decade. In vertebrates, the gut microbiome inter-
acts strongly with other host physiological  systems1. Gut microbiota are sensitive to changes in host immune 
 function2, brain development and  behavior3,4, circadian  rhythms5, and  metabolism6. Beyond these effects, 
the gut microbiome also responds to the host endocrine system. In wild female primates, reproductive hor-
mones like estrogen and progesterone are associated with differences in gut microbiome  composition7,8. In 
humans, both androgens and estrogens, as well as metabolic hormones like insulin, are linked to variation in gut 
 microbiota9,10. Such connections reflect a larger “gut–brain axis” through which the gut microbiota and nervous 
system  communicate11.

Recently, glucocorticoids (GCs) have emerged as a central component of the bidirectional gut–brain  axis12. 
GCs are metabolic hormones produced via the activation of the hypothalamic–pituitary–adrenal axis. They 
are involved in energy regulation and the physiological stress  response13, and can induce adaptive phenotypic 
plasticity in response to environmental  change14. For example, elevated GCs can enhance fitness by facilitating 
transitions between life history  stages15, supporting the energetic demands of  reproduction16, and improving 
survival in response to fluctuating temperatures and food  availability17. GCs may also induce adaptive plasticity 
in the gut microbiome, a host microbial community that responds rapidly to changes in ecology. Shifts in gut 
microbiome composition can regulate energy balance as ambient temperatures rise and  fall18, and can enhance 
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digestion efficiency as an animal’s energetic demands increase (e.g., during reproduction) or as resource avail-
ability  fluctuates19–21.

One measure of gut microbiome composition—alpha diversity, or the taxonomic diversity within a sin-
gle community—appears particularly sensitive to changes in host GCs. A taxonomically diverse microbiome 
confers community stability and resilience, whereas a loss of diversity is presumed to have detrimental conse-
quences via increased host susceptibility to pathogenic  infection22,23. Animal studies in which GCs have been 
experimentally elevated have documented reduced gut microbiome diversity in response to elevated  GCs24,25, 
while studies in unmanipulated populations have found no  relationship26,27. This inconsistency may indicate that 
the link between GCs and gut microbiome diversity is modified by ecological factors (Fig. 1), yet these are rarely 
included in such analyses (Table 1). For example, an increase in food availability can cause transient elevations in 

Figure 1.  Conceptual model demonstrating how ecological factors structure the relationship between 
glucocorticoids and the gut microbiome. (A) Environmental covariance results in direct effects on both variables 
and diminishes a detectable effect of GCs on gut microbiome diversity. (B) Ecology does not influence either 
variable and a direct effect of GCs on gut microbiome diversity is preserved. (C) Ecological factors influence gut 
microbiome diversity indirectly via host GCs. Note that the three scenarios are not mutually exclusive, such that 
a combination of direct (A) and indirect (B) effects may result in the appearance or absence of a relationship 
between GCs and gut microbiome diversity.

Table 1.  Selected prior experimental and correlational studies on the relationship between glucocorticoids 
and gut microbiome alpha diversity in captive and wild vertebrates.

Study Species N GCs Effect Ecological factors included?

Noguera et al. (2018)24 Gulls (Larus michahellis) 29 Experimental ↓ ɑ-diversity No

Stothart et al. (2019)26 Gray squirrels (Sciurus carolinensis) 29 Natural No effect No

Uren Webster et al. (2020)25 Atlantic salmon (Salmo salar) 168 Experimental ↓ ɑ-diversity No

Vlčková et al. (2018)27 Gorillas (Gorilla gorilla gorilla) 42 Natural No effect No
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GCs if conspecific density also increases due to that elevation in food  availability28. If elevated density results in 
more frequent social interactions, it may enhance microbiome diversity directly via increased microbial trans-
mission among  conspecifics29. Such environmental covariance may drive the absence of a relationship between 
GCs and microbiome diversity in unmanipulated populations (Fig. 1)30–32, necessitating an integrative approach 
to determine how GCs impact the gut microbiome in wild animals.

In this study, we test the hypothesis that ecological factors structure the effects of GCs on gut microbiome 
alpha diversity in wild North American red squirrels (Tamiasciurus hudsonicus) living in the Yukon, Canada. 
Red squirrels are highly territorial animals that experience dramatic shifts in food availability and population 
density as a result of fluctuations in their preferred food source, seeds from white spruce trees (Picea glauca)33. 
Squirrels incorporate other food sources into their diet when seasonally available (e.g., fungi, bark, leaves, flow-
ers)34, resulting in changes in dietary diversity that may directly impact gut microbiome diversity. However, 
spruce seeds comprise the majority of their  diet34 despite their episodic availability. Masting events occur every 
4–6 years in white spruce, resulting in the production of a superabundance of cones containing seeds that become 
available in the autumn. By contrast, few to no cones are available in non-mast  years33,35. In anticipation of an 
upcoming spruce mast, squirrels exhibit an extended breeding season and concomitant behavioral changes: ter-
ritoriality breaks down and conspecific interactions increase due to increased breeding frequency and infanticidal 
 behavior36,37. An upcoming spruce mast may thus exert direct positive effects on gut microbiome diversity via 
more frequent social interactions, which leads to greater horizontal microbial  transmission29.

Squirrel densities also fluctuate in parallel with food pulses, with densities at their lowest in the months prior 
to a mast and highest in the spring following a  mast28,38. Although sociality is expected to increase gut microbi-
ome diversity in group-living  animals29, this effect may not occur in territorial  species39. For example, elevated 
conspecific densities result in increased frequency of long-range territorial vocalizations emitted by red squirrels 
in our study  population40, which can in turn reduce interaction frequency by deterring territorial  intrusions39,41. 
Indeed, conspecific interactions in squirrels do not appear to vary with density, and the number of territorial 
intruders has been both negatively  correlated40 and  unrelated41 to density. Given that both actual and perceived 
increases in density cause GC elevations in red  squirrels28,42, density may have indirect rather than direct effects 
on microbiome diversity due to the psychosocial stress of anticipating greater  competition28.

We predicted to find an overall negative association between host GCs and gut microbiome alpha diversity, 
along with an increase in pathogenic taxa and taxa involved in host metabolism with increasing GCs. Similar to 
prior studies in wild animals (Table 1), we focused here on the unidirectional effects of GCs on microbial diversity 
to understand gut–brain axis function in the absence of an experimental manipulation, and because previously 
documented sensitivity of GCs to intrinsic and extrinsic factors in our  population28 suggests it may mediate 
downstream effects on the microbiome. We used a multivariate structural equation modeling  approach43,44 to 
integrate GCs, the gut microbiome, and exogenous ecological and host biological variables into a single causal 
 network45. We tested a set of a priori hypothesized relationships related to the direct and indirect effects of dietary 
heterogeneity, an upcoming spruce mast, and conspecific density on both GCs and gut microbiome diversity 
(Fig. S1). We expected to find that dietary heterogeneity and an upcoming spruce mast would have direct posi-
tive effects on gut microbiome diversity. Conversely, we predicted that density would have an indirect negative 
effect on diversity by way of GC elevations. We additionally included biological factors (reproductive activity, 
sex, age) in our analysis, given their potential effects on GCs and microbiome  composition46–48. We predicted 
that reproductive activity had positive direct effects on both GCs and gut microbiome diversity, as a result of 
increased energetic  demands49,50 and conspecific interactions, respectively. We also expected that older age would 
predict lower microbiome diversity, and that males would exhibit greater microbiome diversity due to travel 
across territories for multiple mating in the breeding  season51.

Results
Gut microbiome diversity is negatively associated with glucocorticoids. Both gut microbiome 
alpha diversity and GCs were highly variable across seasons in each of our sampling years, with gut microbial 
diversity reaching its maxima during the summer months of July and August (Fig. 2A), coinciding with increased 
dietary  diversity34,52. GCs were highest in early spring (March), with the exception of the mast year of 2010 in 
which GCs steadily increased across the first part of the year (Fig. 2A). Consistent with our predictions and in 
line with prior studies in which GCs were experimentally manipulated (Table 1), GCs were negatively associated 
with gut microbiome alpha diversity. Individuals with greater GC concentrations exhibited relatively lower taxo-
nomic diversity (i.e., species richness, Chao1: β = − 75.05 ± 25.91, t = − 2.90, P = 0.004; Fig. 2B). Greater GCs were 
also associated with lower Shannon Indices, a composite measure of species richness and evenness (Shannon: 
β = − 77.64 ± 36.00, t = − 2.16, P = 0.03, Fig. 2C), as well as lower phylogenetic diversity in the gut microbial com-
munity (Faith’s PD: β = − 66.97 ± 26.71, t = − 2.51, P = 0.01, Fig. 2D). The negative relationship between GCs and 
gut microbiome alpha diversity was robust to individual variation in GC production, with higher individually-
averaged GCs similarly predicting lower species richness (β ± SE: − 0.027 ± 0.011, t = − 2.45, P = 0.02).

Glucocorticoids predict changes in gut microbial taxa. We constructed a series of negative binomial 
linear mixed-effects models to determine how reduced gut microbiome alpha diversity was reflected in changes 
at the taxonomic level and identify taxa whose relative abundances changed with increasing GCs. We found 
that elevated GCs were associated with changes in gut microbiome composition at both the family (Fig. 3A) 
and genus (Fig. 3B) levels. Increased GCs predicted shifts in the relative abundances of 15 bacterial families, 
predominantly decreases in rare bacterial families (i.e., taxa that contribute < 0.01% relative abundance to the 
microbial community) (Fig. 3A; Table S1). An exception was a reduction in Elusimicrobiaceae, which contrib-
uted an average of 0.13% relative abundance to the gut microbiome community (β = − 0.81,  PFDR < 0.0001). By 
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contrast, elevated GCs were associated with an increase in Coriobacteriaceae (β = 0.57,  PFDR = 0.007), Strepto-
coccaceae (β = 1.0,  PFDR < 0.0001), Dermabacteraceae (β = 2.81,  PFDR < 0.0001), and Ruminococcaceae (β = 0.12, 
 PFDR = 0.02) (Fig. 3A). Ruminococcaceae, a family of largely cellulolytic and fibrolytic bacteria, is an abundant 
(~ 25% relative abundance) and core taxa in the red squirrel gut  microbiome52.

At the genus level, the relative abundances of 22 bacterial genera were significantly reduced with increas-
ing host GCs. Similar to changes at the family level, the majority of bacterial genera reductions were rare taxa 
(Fig. 3B) with the exception of Brochothrix (mean 0.02% relative abundance). Contrary to our predictions but 
in line with a prior study on  birds24, we found that two potentially pathogenic genera—Yersinia (β = − 1.09, 
 PFDR = 0.004)53 and Salmonella (β = − 10.98,  PFDR < 0.0001)54—decreased in relative abundance with increasing host 
GCs. Conversely, a greater proportion of abundant taxa were found to increase with increasing GCs (Fig. 3B). 
Greater host GCs predicted greater relative abundances of Clostridium (β = 0.28,  PFDR = 0.008), Butyricicoccus 
(β = 0.35,  PFDR = 0.004), Oscillospira (β = 0.60,  PFDR < 0.0001), YRC22 (β = 0.65,  PFDR = 0.004), and Lachnospira 
(β = 0.67,  PFDR = 0.02).

The gut-brain axis mediates ecological effects on the gut microbiota. To determine how eco-
logical and host factors contributed to the effects of GCs on gut microbiome alpha diversity, we fit a structural 
equation model (SEM) based on a set of a priori hypothesized pathways (Fig. S1). The SEM was constructed to 

Figure 2.  Host production of glucocorticoids predicts gut microbiome alpha diversity. (A) Boxplot and line 
graph showing the opposing relationship between mean fecal glucocorticoid metabolites (GCs, scaled) and 
median gut microbiome diversity (Chao1 richness) across each month of the three sampling years. Outliers 
removed from plot for visualization purposes. (B) Partial residual plots (points represent individual samples) 
showing the relationship between gut microbiome taxonomic richness (Chao1), (C) taxonomic richness and 
evenness (Shannon Index), and (D) phylogenetic diversity (Faith’s PD) and matched fecal glucocorticoid 
concentrations (GCs) (N = 227).  R2 values (i.e., coefficients of determination) were obtained from linear mixed-
effect models.
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test the relative direct and indirect effects of three ecological factors (dietary heterogeneity, an upcoming spruce 
mast, and conspecific density) and three host factors (reproductive activity, age, and sex) on GCs and gut micro-
biome diversity. Overall, the SEM revealed direct and indirect pathways by which ecological and host factors 
exert cascading effects on microbial diversity (Figure 4). In line with our predictions, dietary heterogeneity and 
the presence of an upcoming spruce mast both exhibited direct effects on gut microbiome diversity, such that a 
more heterogeneous diet (standardized β = 0.26, P < 0.001) and an upcoming spruce masting event (standard-
ized β = 0.71, P < 0.001) led to greater microbial diversity. Tests of directed separation revealed that there was 
no effect of either dietary heterogeneity or an upcoming spruce mast on host GCs. By contrast, conspecific 
density and reproductive activity indirectly, but not directly, affected gut microbiome diversity via changes to 
host GCs. Higher squirrel densities (standardized β = 0.26, P = 0.006) and reproductive activity (standardized 
β = 0.47, P < 0.001) predicted greater GC concentrations, which in turn reduced microbial diversity (standard-
ized β = − 0.18, P = 0.01). There was no effect of age or sex on gut microbiome diversity, and tests of directed 
separation similarly found no effect of age or sex on host GCs.

Figure 3.  Gut microbial taxa that shift with increasing host glucocorticoids. Barplots depict bacterial families 
(A) and genera (B) whose relative abundance was significantly (Benjamini–Hochberg adjusted P < 0.05) 
predicted by changes in host glucocorticoid concentrations. Bold taxa exhibited a mean relative abundance 
> 0.01%. Effects of GCs reflect model estimates generated by negative binomial mixed models testing the effect 
of GCs on the relative abundance of each bacterial taxa, controlling for collection date, food supplementation 
status, and individual ID. Black bars represent a decrease in relative abundance with increasing GCs; grey bars 
represent an increase with increasing GCs. Taxa depicted at the bottom of Panel B (Kribbella, Propionibacterium) 
exhibited model estimates ~ 10× larger than the rest of the taxa and are therefore separated from the main plot 
for visualization purposes.
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Discussion
Determining if ecological factors structure the relationship between glucocorticoids (GCs) and gut microbiome 
alpha diversity is crucial to interpreting the adaptive value of the GC-microbiome connection in wild animals. 
Here, we demonstrate that the link between GCs and gut microbiome alpha diversity is robust to ecological fac-
tors that directly influence the gut microbiome in wild populations. Our findings additionally suggest that GCs 
can integrate changes in ecology and host biology to induce plasticity in the gut microbiome.

Gut microbiome alpha diversity varied across seasons and peaked in summer, coinciding with the period of 
greatest dietary  heterogeneity34,52 (Fig. 2A). GCs exhibited greater variability overall: GCs reached their peak in 
the early spring in non-mast years (2008, 2009), but in summer of the mast year (2010) (Fig. 2A). Despite this 
variability, there was a significant negative association between GCs and gut microbiome diversity such that 
individuals with greater GCs exhibited lower alpha diversity across three separate measures (species richness, 
evenness, and phylogenetic diversity) (Fig. 2B–D). Though prior studies in unmanipulated populations did not 
detect a relationship between GCs and gut microbiome alpha diversity (Table 1), but  see55 for oral microbiome), 
our results align with experimental studies in which GCs were manipulated. This suggests that gut–brain axis 
communication, particularly between GCs and gut microbiome composition, is under strong selection in our 
population.

As GCs increased, the taxa that decreased in the gut microbiome were overwhelmingly rare taxa that contrib-
uted < 0.01% in relative abundance to the overall community (e.g., Odoribacteriaceae, Sporichthyaceae) (Fig. 3). 
This finding aligns with expectations about the effects of disturbances on gut microbiome composition from 
an ecological  perspective56. Resilience to microbial disturbances is greater among abundant taxa than non-
abundant  taxa57, likely due to divergent patterns of colonization and succession. Abundant taxa retain their 
position in microbial communities via selective filtering and by occupying core  niches56. By contrast, rare taxa 
are incorporated into the microbiome largely via stochastic processes, though they contribute significantly to 
community alpha diversity  measures58. A reduction in rare taxa with increasing GCs in our population may 
therefore indicate that the effects of elevated GCs on rare bacteria in the gut mimic those expected by broader 
microbial disturbances (e.g., antibiotics, infection)59.

A decrease in the relative abundance of rare bacteria may also serve to reorganize host metabolic priorities 
through replacement by core taxa that can better support changes in host energetic demands. Overall, we found 
that increases in host GCs were accompanied by increases in bacteria involved in host metabolism (Fig. 3). Both 
Oscillospira, which correlates with the consumption of spruce buds in the late  spring52, and Coriobacteriaceae, a 
common rodent gut microbe involved in energy  metabolism60, increased in relative abundance with increasing 
GCs. In experimental settings, housing stress caused an increase in Coriobacteriaceae61, suggesting that it may 
similarly contribute to maintaining energy balance in wild rodents facing challenging environmental conditions. 
We additionally found that individuals with elevated GCs exhibited greater relative abundances of Ruminococ-
caceae, a bacterial family of cellulolytic and fibrolytic bacteria involved in dietary acclimation in wild  animals20,62. 
Together, our results suggest that in our study population, GCs may coordinate adaptive shifts in gut microbiome 
composition in response to increased energetic demands, seasonal changes in diet, or both.

Resistance to pathogens has been proposed as one of the major evolutionary advantages conferred by host 
microbial  communities63 and butyrates, compounds produced via fermentation by microbiota in the large 
 intestine64, are particularly critical to preventing intestinal pathogen  invasion65. We found that the butyrate-
producing bacteria Butyriciococcus (family Ruminococcaceae) and Clostridium were elevated in the red squirrel 

Figure 4.  Ecology and host biology influence gut microbiome alpha diversity via changes in host 
glucocorticoids. Structural equation model assessing direct and indirect effects of ecological and host factors 
on glucocorticoids (GCs) and gut microbiome alpha diversity (Chao1 richness). Solid black arrows represent 
significant positive paths; solid red arrows represent significant negative paths; dotted arrows represent non-
significant paths. Text labels indicate standardized beta estimates (i.e., effect sizes) and significance (P < 0.05*, 
P < 0.01**, P < 0.001***) for each of the predicted pathways tested in the SEM.
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gut microbiome as GCs increased (Fig. 3). In line with this finding, elevated GCs were associated with lower 
relative abundances of two potentially pathogenic genera: Salmonella and Yersinia. Salmonella are rod-shaped, 
Gram-negative bacteria that can cause gastroenteritis in both rodents and humans upon  infection66. Similarly, 
Yersinia (including Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) are commonly harbored in the gut 
microbiota of wild rodents and can lead to enteric and systemic  disease54,67, though we note there is currently 
no evidence of Yersinia disease in our population. While a loss of these taxa with increasing GCs contradicts 
theoretical expectations of pathogen susceptibility as microbial diversity decreases, our findings align with a 
prior study in free-living birds in which elevated GCs similarly reduced the relative abundance of intestinal 
 pathogens24, and in piglets in which GCs reduced Salmonella,  specifically68. These data suggest that elevations 
in GCs may confer short-term protection against intestinal pathogens, potentially through transient increases in 
gut immune function or butyrate production. Confirmation of the pathogenicity of these taxa, however, requires 
high-resolution, strain-level genomic data outside the scope of the present study.

To disentangle the effects of ecological and host factors on the relationship between GCs and the gut microbi-
ome, we constructed a structural equation model (SEM) based on a set of causal a priori hypothesized pathways 
(Fig. S1)43,69. As predicted, an upcoming spruce mast had a direct positive effect on gut microbiome alpha diver-
sity, and this path was the strongest path in the SEM (Fig. 4). An increase in gut microbiome diversity in the 
mast year compared to the non-mast years aligns with our expectation of territorial breakdown and increased 
social interactions due to an extended breeding season in the months leading up to a masting  event36,37. Given 
that the positive link between sociality and gut microbiome diversity is well-supported at least in some  taxa8,29,70, 
squirrels may exhibit increased gut microbiome diversity due to greater horizontal transmission of microbes 
between conspecifics as social interactions become more frequent.

Similar to the effects of an upcoming spruce mast, dietary heterogeneity had a direct positive effect on 
microbial diversity, though this effect was approximately 2.5× weaker than that of the upcoming mast (stand-
ardized β = 0.26). Gut microbiome alpha diversity was greatest in the months in which the food available to red 
squirrels was most heterogeneous (e.g., fungi, buds, and seeds)34. Indeed, a varied diet is expected to increase 
microbiome diversity through greater substrate selection for diverse ecological  niches71. This effect of dietary 
heterogeneity on gut microbiome diversity, coupled with prior work on the relationship between diet and gut 
microbiome composition in this  population52, indicates that the red squirrel gut microbiome responds rapidly 
to shifts in food availability.

By contrast, conspecific density indirectly, but not directly, impacted gut microbiome diversity by way of GCs, 
lending support to previous findings that the frequency of social interactions (and thus horizontal transmission) 
is not related to squirrel density in this  population40. In line with our expectations, elevated conspecific densities 
predicted increased host production of  GCs28, which in turn predicted reduced gut microbiome diversity (Fig. 4). 
Red squirrels are highly sensitive to changes in density, and signals of both actual and perceived elevated den-
sity lead to GC increases independent of other ecological factors that covary with it (e.g., food)28. That elevated 
density reduced gut microbiome diversity via increasing GCs aligns with our understanding of the regulation of 
the gut–brain axis by the social environment, stress, and psychological state in laboratory  rodents72. In the wild, 
vocalizations can buffer individuals from physical interactions with conspecifics even in times of high densities 
in highly territorial animals like red squirrels. Our results suggest that the indirect effects of increased density on 
gut microbiome diversity likely reflect the psychosocial stress of increased competition, demonstrating a novel 
link between social stress and the gut–brain axis in a wild mammal.

Reproductive state was the only host factor to exhibit an effect on gut microbiome diversity, and the effect 
was indirect and the strongest path to GCs in the model. As predicted, being reproductively active (e.g., scrotal 
for males, and breeding, gestating, or lactating for females) predicted greater GCs, and in turn a reduction in 
microbial diversity. In both males and females, reproduction increases host metabolic demands  broadly50and, 
in females in our population, GCs  specifically49. A consequent reduction in microbiome diversity may therefore 
better support host energy balance by increasing the relative abundance of core microbiota at the expense of rare 
taxa that contribute less to the metabolic functions of the community. Contrary to our predictions, we found 
no effect of sex or age on microbial diversity, and the SEM did not identify an effect of either on GCs via tests of 
directed  separation69. Studies in humans and other mammals have found mixed effects of age on both GCs and 
microbial  diversity48,73,74. Sex effects on microbiome composition related to hormones and behavior have been 
documented in experimental rodent  models47,75, but studies in wild populations have not typically found sex 
differences in gut microbiome  composition76.

A number of potential pathways may explain how host GCs impact gut microbiota. First, GCs can alter lipid 
metabolism, leading to lipid accumulation in the  gut77. Increased lipid metabolism reduces taxonomic diversity 
in the gut microbiome of laboratory rodents as some bacteria exhibit sensitivity to lipid  accumulation78. Sec-
ond, elevated GCs can disrupt host circadian rhythms in laboratory  settings78, reducing gut microbiome alpha 
 diversity79. Finally, increased GCs can decrease mucin synthesis, which is integral to the stability of the gut 
microbiome and largely determines its  composition80. Impaired mucin synthesis as a result of elevated GCs may 
therefore disrupt gut microbiome stability by reducing the resilience of the mucosal layer, leading to a reduction 
in non-core bacteria and an overall loss of community  diversity81.

Of note is the bidirectionality of the gut–brain axis demonstrated in laboratory rodent  studies82,83, and thus 
the potential bidirectionality of the GC-microbiome relationship in wild animals. Here, we focused on the unidi-
rectional effects of GCs on gut microbiome diversity similar to prior studies (Table 1). However, gut microbiota 
can themselves regulate the hypothalamic–pituitary–adrenal axis, such that shifts in gut microbiome composition 
may directly modulate host production of  GCs84 and contribute to a feedback loop between the two  systems85. 
Statistical constraints inherent to structural equation modeling prevented us from incorporating a bidirectional 
relationship between GCs and microbial diversity into this  study69. Nonetheless, the bidirectionality of the 
gut–brain axis has important implications for the evolution of the relationship between GCs and microbial 
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diversity in wild  mammals11. We encourage future research on wild populations to implement experimental 
frameworks whenever possible to better characterize the complexity of the GC-gut microbiome relationship.

Methods
Ethics statement. All methods were carried out in accordance with relevant guidelines and regulations. All 
research methods and protocols were conducted under animal ethics approvals from Michigan State University 
(AUF#04/08-046-00), University of Guelph (AUP#09R006), and University of Michigan (PRO00005866). All 
authors complied with the ARRIVE guidelines.

Study population. Subjects for this study were wild North American red squirrels (Tamiasciurus hudsoni-
cus) inhabiting a natural environment in southwest Yukon, Canada (61° N, 138° W). All subjects were continu-
ously monitored as part of the Kluane Red Squirrel Project, a long-term field study that has been conducting 
a combination of live-trapping, focal behavioral observations, sampling, and experimental manipulations in 
the area since  198738,86. Individual squirrels are marked with small metal ear tags and unique combinations 
of colored wire threaded through the ear tags. Individuals are monitored from birth to death in each year of 
study, roughly from March to October, using live-trapping and behavioral  observations38. Individuals included 
in our study lived on one of three grids (Agnes or AG, Kloo or KL, Sulphur or SU). On AG, individuals were 
supplemented with peanut butter from October to May in each year for a separate experiment focused on experi-
mentally increasing squirrel population  density28,38. On KL and SU, no food supplementation was provided. All 
models controlled for food supplementation status given its potential impacts on gut microbiome composition.

Sampling. We collected 227 samples from 88 individuals across three years (2008–2010). When individu-
als were captured, they were handled such that their unique identity could be determined (by reading ear tags), 
sexed, and their reproductive condition could be recorded. Fecal samples were collected opportunistically dur-
ing live-trapping from underneath the traps using forceps. Following capture and handling of squirrels, fresh 
fecal samples were collected from underneath the traps, kept on wet ice until they could be frozen at − 20 °C 
within 5 h of collection in the field. Samples contaminated with urine were not collected and all samples were 
kept at − 20 °C until analysis. We removed one fecal pellet from each sample using sterilized forceps for micro-
biome sequencing and then used the rest of the sample to measure fecal GC metabolites.

Age. The age of each squirrel was known as individual squirrels were uniquely tagged in their natal nest when 
they were ~ 25 days of age and age is accordingly recorded at each trapping  event38.

Reproductive activity. Squirrels were live-trapped regularly and handled using visualization to determine 
reproduction state. During each trapping event simultaneous with the collection of microbiome and hormone 
samples, the reproductive state of the individual was determined via abdominal  palpation86. Males were consid-
ered reproductively active if their testes were scrotal, and not reproductively active if testes were abdominal. For 
females, pregnancy status was assessed via abdominal palpation for fetuses as well as by examining nipple condi-
tion. Females were determined to be reproductively active if they were gestating, lactating, or breeding based on 
nipple condition. We have previously found that females that are reproductively active (pregnant or lactating) 
have higher fecal GC metabolites than those that were not reproductively active whereas there were no differ-
ences in the effects of reproductive activity (presence or absence of scrotal testes) in  males49.

Dietary heterogeneity. Although red squirrels consume primarily white spruce seeds, they also consume 
a number of other foods (e.g., spruce bark and needles, willow leaves and buds, fungi, and bearberry flowers) and 
thus experience varying levels of seasonal dietary  heterogeneity34. We coded dietary heterogeneity by ranking 
the availability of these different foods across seasons from greatest (3) to least (1). Samples collected prior to 
June of each year were ranked as 1, while samples collected in the month of June and late summer (July–August) 
were ranked as 2 and 3, respectively.

Conspecific density. Densities (expressed as squirrels per hectare) for each grid of the study (KL, SU, AG) 
were calculated separately for each year (2008, 2009, 2010) across the dataset using census data. In May of each 
year, we determined the number of squirrels owning a territory on our study areas using a combination of live-
trapping and behavioral observations. Because squirrels are diurnal, regularly exhibit territorial calls, and their 
territories are visually conspicuous, we were able to completely enumerate all squirrels living in our study areas.

Sequencing and bioinformatics. Microbiome data used in this study are a subset of previously pub-
lished  data52. DNA extraction and sequencing was performed as described in Ren et al.52. Briefly, the V1–V3 
hypervariable region of the 16S rRNA bacterial gene was amplified using two universal primers: 27F (5′-ARG 
GTT TGATCMTGG CTC AG-3′) and 534R (5′-TTA CCG CGG CTG CTG GCA C-3′). Samples were barcoded for 
PCR amplification, pooled, gel purified, and then sequenced on an Illumina MiSeq using 300 bp paired-end 
sequences. Sequences were then filtered, quality controlled, and reads were successfully merged using  QIIME87. 
Chimeras were removed using  USEARCH88 and sequences determined to be non-chimeric by both de novo 
and reference-based algorithms were retained. Reads were clustered to OTUs using  UCLUST89 with an identity 
threshold of 97% (genus-level). Mitochondria and chloroplast were removed, and samples were rarefied to 4000 
reads per sample.
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Hormone metabolite analysis. The time period from collection in the field to freezing (~ 5 h) did not 
impact fecal GC  metabolites49. We measured fecal GC metabolites using previously validated  protocols49,90. 
Briefly, samples were lyophilized for 14–16  h, bathed in liquid nitrogen, and pulverized using a mortar and 
pestle. A subsample (0.05 g) was then extracted using 80% methanol where the samples were vortexed at 1450 
RPM for 30 min followed by centrifuging for 15 min at 2500g49. The supernatant was then used in an enzyme-
immunoassay that employed an antibody that measures GC metabolites with a 5α-3β,11β-diol  structure91. We 
have previously validated this assay and shown that the antibody can accurately measure increases in adrenal 
production of  GCs49. We have also shown that our measures of fecal GC metabolites are comparable across 
 assays92. Using pooled samples that were run repeatedly on different plates (n = 115) in our laboratory show that 
the estimates of optical density for these pooled samples were highly repeatable (R = 0.851, 95% CI 0.543–0.925). 
Using a linear mixed-effects model, we partitioned the variance in the optical density recorded for the pooled 
samples that were run across these different plates and found that most of the variance was due to the sample 
itself (85.1%) with little of it being explained by intra-assay variation as all samples were run in duplicate (4.9%) 
or by inter-assay variation (9.9%).

Statistical analysis. All statistical analyses were conducted in R (v. 3.5.2.) (R. Core Team, 2015). OTU and 
taxonomy tables were imported into R and merged into a phyloseq object for downstream analyses using the 
 ape93 and  phyloseq94 packages. All figures were created in R, with the exception of the conceptual model (Fig. 1) 
and the structural equation model figures (Figs. 4 and Fig. S1), which were created in bioRender (www. biore 
nder. com).

Alpha diversity. The estimate_richness() function in the phyloseq package was used to calculate the 
observed richness (Chao1) and Shannon Index of alpha diversity. Faith’s Phylogenetic Distances were calculated 
using the pd() function on the phyloseq object in  picante95. Linear mixed-effects models were used to assess the 
relationship between bacterial diversity and fecal glucocorticoid metabolites (GCs), including individual ID as 
a random intercept, and collection date and food supplementation as fixed effects. GCs concentrations were 
log-transformed to improve model fit. Shannon Indices were Tukey transformed prior to analysis to achieve 
residual normality. All models were assessed for multicollinearity among predictor variables by calculating vari-
ance inflation factors (VIF < 5).

Differential abundance testing. To identify the bacterial taxa whose relative abundances were signifi-
cantly associated with changes in host GCs, we constructed negative binomial mixed models and implemented 
our analysis using the NBZIMM  package96. Negative binomial models outperform other traditional differential 
abundance methods (e.g. DESeq) because they are better equipped to handle the zero-inflation and sparsity 
common to microbiome count  data96. Taxa included in differential abundance testing were filtered with a liberal 
threshold of > 0.001% relative abundance to the overall microbiome community to avoid excluding rare taxa as 
they contribute substantially to measures of community  diversity58,97. Models included the read count of each 
bacterial taxa as the dependent variable, GCs (scaled to zero mean and unit variance) as a fixed effect, control-
ling for collection date (fixed), food supplementation (fixed), and individual id (random). Taxa whose negative 
binomial models did not converge due to a high presence of zeroes were modeled instead with zero-inflated 
negative binomial models using the glmer.zinb() function in the same package (NBZIMM). We controlled the 
false discovery rate by applying a Benjamini–Hochberg FDR correction to all p-values. Adjusted p-values < 0.05 
were considered statistically significant.

Structural equation modelling. To integrate ecological and host variables into our model framework 
investigating the relationship between GCs and gut microbiome diversity, we constructed a structural equation 
model using (SEM) using the piecewiseSEM  package69. SEM is an effective way to evaluate direct and indirect 
effects of multiple variables within complex ecological  systems43. Unlike traditional variance covariance-based 
SEM, piecewise SEM approaches allow for the inclusion of random effects, the construction of a single causal 
network from multiple separate models, and the ability to handle small sample sizes and compare models using 
Akaike information criterion (AIC)69.

Using piecewiseSEM, we investigated whether the relationship between GCs and gut microbiome diversity 
(endogenous variables, i.e., variables of interest) was moderated by host and/or ecological factors (exogenous 
variables, i.e., variance outside of the model structure). All categorical variables were converted to numeric vari-
ables prior to modeling. To build the SEM, we first constructed two component linear mixed-effect models. The 
first model tested the effects of conspecific density, reproductive activity, dietary heterogeneity, and an upcoming 
mast on GCs. The second model tested the effects of reproductive activity, dietary heterogeneity, an upcoming 
mast, age, and GCs on gut microbiome diversity (Chao1 richness). Both component models included sample 
collection date and food supplementation status as a fixed effect and individual ID as a random effect. However, 
food supplementation did not affect GCs or gut microbiome diversity in either of the component models (effect 
on GCs: β ± SE − 4.86 ± 3.08, t = − 1.58, P = 0.12; effect on gut microbiome alpha diversity: β ± SE − 29.14 ± 79.13, 
t = − 0.37, P = 0.71), and was therefore removed from the SEM to improve model fit (AICc) and refine the stand-
ardized beta estimates. The overall fit of the SEM was evaluated using Shipley’s test of d-separation Fisher’s C 
statistic and AICc.

Data availability
All sequences, hormone data, and R code related to this manuscript are available at figshare (10.6084/
m9.figshare.19077773 and https:// figsh are. com/s/ a5288 6d801 6cdd1 f0dbb).

http://www.biorender.com
http://www.biorender.com
https://figshare.com/s/a52886d8016cdd1f0dbb
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