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Abstract

Both parasitism and social contact are common sources of stress that many gregarious species
encounter in nature. Upon encountering such stressors, individuals secrete glucocorticoids
and although short-term elevation of glucocorticoids is adaptive, long-term increases are cor-
related with higher mortality and deleterious reproductive effects. Here, we used an experi-
mental host-parasite system, social rodents Acomys cahirinus and their characteristic fleas
Parapulex chephrenis, in a fully-crossed design to test the effects of social contact and parasit-
ism on stress during pregnancy. By analysing faecal glucocorticoid metabolites, we found that
social hierarchy did not have a significant effect on glucocorticoid concentration. Rather, soli-
tary females had significantly higher glucocorticoid levels than females housed in pairs. We
found a significant interaction between the stressors of parasitism and social contact with soli-
tary, uninfested females having the highest faecal glucocorticoid metabolite levels suggesting
that both social contact and infestation mitigate allostatic load in pregnant rodents. Therefore,
the increased risk of infestation that accompanies group-living could be outweighed by posi-
tive aspects of social contact within A. cahirinus colonies in nature.

Introduction

Although the link between stress and individual fitness costs remains a prominent area of
investigation, relatively few experimental studies have examined the relationships between
multiple stressors, especially those related to parasites. Both infestation with ectoparasites
and various types of social contact with conspecifics are common sources of stress that
many gregarious animal species encounter in nature (Stockley and Bro-Jorgensen, 2011;
Robertson et al., 2017; Culbert et al., 2018). Indeed, group-living and parasitism
(Beldomenico et al., 2008; Beldomenico and Begon, 2010) both generate potential sources
of stress in wild animals and increased risk of parasitism is often referred to as a fitness
cost of group-living (Brown and Brown, 1986; Cote and Poulin, 1995; Godfrey et al., 2009;
Kappeler et al., 2015). The cost of repeatedly maintaining physiological stability in a manner
that appropriately corresponds with the environment during stressful situations is known as
allostatic load (Sterling and Eyer, 1988; McEwen, 1998; Juster et al., 2010). Individuals holding
social positions, dominant or subordinate, that have the higher allostatic load would experi-
ence more physiological stress (Creel, 2001; Goyman and Wingfeld, 2004). In some species
of group-living mammals, dominant individuals actually have higher levels of physiological
stress than subordinates (Creel et al., 1995, 1997; Arnold and Dittami, 1997; Cavigelli, 1999;
Sands and Creel, 2004; Fichtel et al., 2007). However, in other mammalian species, subordi-
nates experience more physiological stress than dominants. For example, subordinate lab
mice (Louch and Higginbotham, 1967), baboons (Sapolsky, 1992), and hyenas (Goymann
et al., 2001) experience a higher allostatic load than their dominant counterparts. In addition,
individuals of different social ranks could have different stress responses depending on the
type of interaction involved (Stocker et al., 2016).

Parasitism could either be a cause of increased stress or increased physiological stress could
increase the likelihood of an individual becoming parasitized (e.g. Beldomenico et al., 2008).
For example, increased social stress in the large vesper mouse (Calomys callosus) was asso-
ciated with higher levels of Trypanosoma cruzi infection (Santos et al., 2008) and mice with
chronically elevated corticosterone levels are more susceptible to parasitic nematodes
(Malisch et al., 2009). This suggests that increasing stress also increases host susceptibility
to parasites. On the other hand, infection with nematodes (Anguillicola novaezelandiae)
increased glucocorticoid (GC) levels in European eels, suggesting that parasites can directly
increase host physiological stress (Dangel et al., 2014). Similarly, St. Juliana et al. (2014)
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found that flea infestation can be physiologically stressful to
rodent hosts. In this case, the type of host exploitation used by dif-
ferent flea species as well as the evolutionary history between host
and flea species contributed significantly to host faecal GC metab-
olite concentrations (St. Juliana et al., 2014). Thus, parasitism can
be thought of as a potentially important biotic stressor in nature
that could interact with other stressors, such as those encountered
in social contexts. Indeed, physiological stress associated with
social hierarchy position (e.g. Kokko, 2003; Dalerum et al.,
2006; Young et al., 2006; Cook et al., 2011) and parasitism
(e.g. Hare et al., 2010; Koop et al., 2013; González-Warleta
et al., 2014; Hurtado et al., 2016) are both considered possible
causes of reproductive failure and therefore, both could substan-
tially affect an individual’s fitness. However, little is known
about the relative contributions of each of these factors to the
physiological stress that an individual experiences. Correlations
between GCs and intestinal parasite species richness, but not
dominance rank, have been found in male chimpanzees
(Muehlenbein et al., 2004). However, experimental manipulations
that simultaneously test the relative amount of physiological stress
in reproductive animals caused by group-living and by parasitism,
as well as possible interaction effects between these two stressors,
have never been performed.

Both biotic and abiotic stressors impose various fitness costs
on individuals belonging to a wide range of taxa (e.g. Sapolsky,
1986; Svensson et al., 1998; Persons et al., 2002; Eccard and
Ylönen, 2003; Meyer et al., 2003; Creel et al., 2009; Wingfield,
2013). Ultimately, short-term elevation of GCs is adaptive because
it shifts energy from some physiological processes, such as diges-
tion, toward others that provide more immediate mechanisms to
cope with acute stressors (Munck et al., 1984; Wingfield et al.,
1998). However, long-term increases in GC levels are correlated
with higher mortality rates in the wild (Pride, 2005) while eleva-
tion of GC levels due to chronic stressors can impact immunity
(e.g. McEwen, 1998; Marketon and Glaser, 2008; Tort, 2011),
behavior (e.g. Conrad et al., 1996; de Quervain et al., 1998;
Roozendaal, 2002), and reproduction (e.g. Dobson and Smith,
2000; Tilbrook et al., 2000). Reproductive effects, including
delay in age of first reproduction (Crespi et al., 2013), reduction
in the number of reproductive bouts (Hackländer et al., 2003),
decreases in offspring quantity (Hayward et al., 2011), and
decreases in offspring quality (Schreck et al., 2001), are significant
fitness costs associated with chronic increases in GC levels.

Here, we used an experimental rodent-flea system to test the
effects of social contact and parasitism, both alone and in com-
bination, on physiological stress, as measured by GCs. We used
Egyptian spiny mice, Acomys cahirinus, for this study as they
are gregarious rodents that form group-living colonies in nature.
These colonies typically consist of one male with several females
and their pups (Fraňková et al., 2012). Although A. cahirinus
breeds cooperatively, one female will take a dominant position
and behave more aggressively toward subordinate females within
the colony, especially when pups are present (Porter and Doane,
1978). As Egyptian spiny mice are considered the principal hosts
for Parapulex chephrenis fleas and this flea species is rarely found
on rodents other than Acomys spp. in nature (Krasnov et al.,
1999), we used P. chephrenis for our experimental infestations.
We non-invasively measured GCS via faecal glucocorticoid
metabolite (FGCM) concentrations (Palme, 2019), in pregnant
females experiencing different social and infestation statuses.
Based on St. Juliana et al. (2014), we hypothesized that GCs
would be higher in parasitized females when compared to unin-
fested females and thus, parasitized females would have higher
FGCM levels. Since high allostatic load is linked with lower social
rank in rodent species (e.g. Louch and Higginbotham, 1967), we
also hypothesized that subordinate females would have higher

FGCM levels thereby using FGCM as an indicator of allostatic
load. Given that GC levels increase during pregnancy
(e.g. Atkinson and Waddell, 1995), we expected that pregnant
females would have higher FGCM concentrations; however, we
also hypothesized that individuals with higher allostatic loads
would exhibit higher levels of FGCM during pregnancy when
compared to individuals with lower allostatic loads. Thus, we pre-
dicted that an interaction between the stressors of flea infestation
and social contact would occur with FGCM levels being highest in
infested, subordinate females during pregnancy.

Materials and methods

Study animals

We used rodents and fleas originating from our laboratory col-
onies and specific details regarding the maintenance of these col-
onies are available elsewhere (e.g. Krasnov et al., 2001, 2002;
Khokhlova et al., 2009a, 2009b). Prior to experiments, rodents
were individually housed in plastic cages (28 cm × 20 cm ×
13 cm at 25 °C ± 1 °C and 12:12 D:L) with wood shavings as bed-
ding material. They were fed whole millet seeds ad libitum and
fresh alfalfa daily as a water source. Animals also received com-
mercial cat chow (Nestlé Purina, Société des Produits Nestlé
S.A., Switzerland) once a week as a protein source.

Female cohabitation and social hierarchy position

We used nulliparous female A. cahirinus between five and eight
months of age. Although age has not been shown to have a sig-
nificant effect on FGCM levels in this species (Nováková et al.,
2008), we used animals that were considered young, sexually
mature adults. In addition, none of these females had been previ-
ously exposed to flea infestation. Prior to experiments, females
were randomly assigned to either solitary or group-living treat-
ment groups and were placed in 33 cm × 26 cm × 16 cm plastic
cages. Those females who were assigned to group-living treat-
ments were then randomly assigned a full-sibling sister, who
was not a littermate and thus never encountered prior to the
experiment, with which to cohabitate. Females were then weighed
and the larger female was marked with nontoxic dye on its dorsal
pelage to differentiate between individuals. Next, females were
allowed a 2 week acclimation period (Fraňková et al., 2012) dur-
ing which they were allowed to interact and self-determine their
social hierarchy position. During this time, the females were
placed in a designated experimental room (25 °C ± 1 °C and
12:12 D:L) to minimize external disturbance and their behaviour
was recorded using closed-circuit video camera setup (8 CH 1 TB
H.264 Security DVR System + Sony Color CCD IR Cameras, Sony
Corporation, Tokyo, Japan). Each individually-numbered cage of
two females had its own camera channel and cameras were
equipped with motion sensors that would initiate video recording
whenever the rodents moved around the cage. Recording then
continued for 5 min after movement ceased. These cameras are
capable of recording in low light conditions; therefore, nocturnal
interactions between females were easily observable. After the
2 week acclimation period, recordings were analysed in order to
determine which female could be considered dominant and
which could be considered subordinate. We used a scoring
method similar to that of Chelini et al. (2011) to determine social
hierarchy. In short, aggressive behaviours (e.g. attacking, guarding
food dish) and defensive behaviours (e.g. fleeing, submissive pos-
turing) were recorded with one point given to females for every
instance of aggressive behaviour (Chelini et al., 2011). After the
observation period, females with a higher score in each pair
were considered dominant (See Supplemental Table SX for
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summary data). Although females were acclimated for 2 weeks,
after approximately 1 week each pair of females had defined
their social position and instances of aggression dramatically
decreased. This type of behaviour is consistent with published
records of how this species acclimates to unknown individuals
within a laboratory setting (Fraňková et al., 2012).

Experimental design

After the acclimation period, A. cahirinus individuals or pairs
were randomly assigned to be either infested with fleas or remain
uninfested as part of the control groups. Thus, an individual
rodent could belong to one of six treatment groups: control and
solitary (C0), control and dominant (C1), control and subordin-
ate (C2), infested and solitary (I0), infested and dominant (I1), or
infested and subordinate (I2). Each treatment group was com-
prised of 12 animals in total. Fleas were randomly selected from
laboratory colonies and released into home cages of rodents
belonging to infested treatment groups (100 fleas for group-living
cages, 50 fleas for solitary cages). As rodents were free to groom,
approximately 50% of fleas per week were expected to be dis-
lodged and killed by a host (Hawlena et al., 2007). Therefore,
every week new fleas (100 fleas for group-living cages, 50 fleas
for solitary cages) were added to each cage to keep flea pressure
more or less constant. Female rodents were weighed every day
during the experimental period.

Two weeks after initial infestation, a male was added to all
female cages. For infested treatment groups, enough fleas were
added so that a sufficient number of fleas could infest all three
animals in the cage (150 fleas for group-living cages, 100 fleas
for solitary cages). Males were housed with females for 2 weeks
to allow successful copulation. One week after introducing a
male, another set of fleas (150 fleas for group-living cages, 100
fleas for solitary cages), was added to each cage for infested treat-
ment groups. After 2 weeks, we removed male rodents and col-
lected all fleas from their bodies via brushing their coat with a
toothbrush. Then, males were returned to their respective labora-
tory colony while females were placed in new cages and again
infested with fleas (100 fleas for group-living cages, 50 fleas for
solitary cages) until shortly before parturition (approximately
the 35th day of pregnancy as determined by pattern of female
mass gain; Nováková et al., 2010). Fleas were also removed
from females using a toothbrush and females were transferred
to individual, flea-free cages before giving birth. Females that
were previously in pairs were moved to individual cages to ensure
that no alloparental care of pups occurred. All animals belonged
to uninfested or infested treatment groups experienced the same
handling procedures (i.e. either cleaning or sham cleaning,
respectively). Supplemental Fig. S1 provides a conceptual diagram
summarizing the steps that occur during the experimental period
before parturition occurs. All experimental protocols met the
requirements of the 1994 Law for the Prevention of Cruelty to
Animals (Experiments on Animals) of the State of Israel and
were approved by the Ben Gurion University Committee for the
Ethical Care and Use of Animals in Experiments (Permits
IL-72-10-2012 and IL-36-07-2017).

Analysis of FGCMs

Faeces collection procedures followed those of Frynta et al.
(2009). In short, females were isolated from each other and placed
into individual faecal collection cages following the experimental
time point schedule (Table 1). The bottom of these collection
cages had a paper liner with three wire screens placed over it.
Thus, faecal pellets would fall to the floor of the cage and be sepa-
rated from the animal itself. Animals were allowed to move freely

around the collection cage for 2 h. As FGCM concentrations in
rodents can significantly vary with time of day (Sipari et al.,
2017), all experimental collections occurred within the same 3 h
window of time (i.e. 13:00–16:00), with the exception of faecal
collection after birth (T4) because the collection time depended
on when pups were born, which did not follow a set schedule.
After parturition, faecal pellets were obtained from adult females
between ∼2 and 4 h after pups were born (T4). Faecal pellets were
also obtained from adult females within a 2 h window immedi-
ately after weaning (T5). After the collection period, animals
were placed in their experimental cages (T0–T2), cleaned and
moved to flea-free cages (T3), returned to clean cages (T4), or
returned to the main rodent colony (T5).

Faecal pellets were removed from collection cages and placed
in 1.5 mL SafeLoc microcentrifuge tubes (Eppendorf, Hamburg,
Germany). Tubes were then placed with their lids open in a dry-
ing oven overnight at 60 °C to remove any moisture from faeces.
After drying, the lids were closed and tubes were temporarily
stored in a freezer at −20 °C until the end of the experimental per-
iod. After the last experimental time point, faeces were removed
from cold storage and FGCM were extracted and measured
using protocols outlined by Touma et al. (2003, 2004) with
minor modifications. In short, pellets from each tube were ground
with a clean mortar and pestle. Ground faeces were weighed and
0.05 g transferred to a clean 1.5 mL SafeLoc microcentrifuge tube,
then 1.0 mL of 80% methanol was added to the tube. Next, sam-
ples were mixed on a QSD 0S20 orbital shaker (QSR Technologies
International, Keysborough, Australia) for 30 min and subse-
quently centrifuged at 2500g for 15 min in a CN-2000 microcen-
trifuge (Hsiang Tai Machinery Industry Co, Ltd., Taipei, Taiwan).
After centrifugation, 500 µL of the resulting supernatant were
transferred to clean SafeLoc microcentrifuge tubes. To ensure
safe storage these tubes were then again placed with their lids
open in a drying oven overnight at 60 °C to allow methanol to
evaporate. The resulting tubes were completely dry with residue
containing FGCMs lining the interior. The lids of these tubes
were then closed and the tubes stored at room temperature
until FGCM analysis.

To perform FGCM analysis, the residue was reconstituted by
adding 500 µL of 80% methanol to each tube and vortexed for
1 min. Aliquots of the reconstituted supernatant were then diluted
1:10 with assay buffer (Tris/HCl 20 mM, pH 7.5) in new titer tubes
and frozen at −20 °C until analysed in an established group-specific
enzyme immunoassays (5α-pregnane-3β,11β,21-triol-20-one EIA).
This EIA, measuring metabolites with a 5α-3β,11β-diol structure,
was originally developed for laboratory mice. Details of the EIA,
as well as cross-reactions with different steroids, can be found in
Touma et al. (2003). The intra- and interassay coefficients of vari-
ation were below 10.0 and 12.0%, respectively. Note that unlike
most laboratory rodents, cortisol is the major stress hormone for
the genus Acomys and the above protocols were validated for A.
cahirinus via adrenocorticotropic hormone challenge test
(Nováková et al., 2008).

Statistical analyses

Our focus was female stress hormone levels during pregnancy;
therefore, only those females who gave birth were included in
the statistical analyses. However, we also tested the null hypothesis
that there would be no difference between FGCM concentrations
at T0 between females that did and did not give birth using a
Welch test comparing two groups with unequal sample sizes.
We used T0 as this was the baseline FGCM for each female that
was not influenced by pregnancy for both groups. We analysed
the effects of infestation status (infested or uninfested), social con-
tact type (solitary, dominant, or subordinate), and experimental
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time point (T0–T5) on FGCM concentrations via a mixed effects
model with an autocorrelation structure in the model using pack-
age ‘nlme’ (Pinheiro et al., 2018) in the R statistical environment
(R Core Team, 2015) of all females who gave birth to pups. This
way we were able to take repeated measures of FGCM concentra-
tion for each individual into account. Infestation status, social
contact, and time were coded as categorical variables. Because
A. cahirinus that lose body mass during flea infestation have
higher FGCM levels than those that do not (St. Juliana et al.,
2014), both total mass change over the course of the experiment
(i.e. body mass at T5–body mass at T0; Supplementary Table A1)
and animal identity were included as random factors. To param-
eterize the model, we first needed to find the first-order temporal
autocorrelation structure (corAR1) using the ‘correlation’ state-
ment and the ‘ACF’ function in package ‘nlme’ (Mangiafico,
2016). The resulting correlation structure (ACF =−0.0627) was
then built into the mixed effects model. Deviations from homo-
scedasticity or normality were not revealed during a visual inspec-
tion of residual plots. This mixed effects model was then subjected
to analysis of deviance (Type II test) using function ‘Anova’ in
package ‘car’ (Mangiafico, 2016) to determine the significance
of any main effects or interaction terms. We then calculated
Cohen’s d to quantify the effects size of each term. In addition,
as number of births varied in each treatment group, we used an
x2 test of association to ensure that the number of births observed
in each group did not significantly differ.

Results

The number of females who gave birth ranged from a maximum
of 10 out of 12 females (groups C0 and I0) to a minimum of six
out of 12 females (C2) per treatment group (Supplementary
Table S2); however, the difference between groups was not signifi-
cant (x2 = 0.06, df = 2, P = 0.97). Additionally, baseline FGCM
concentrations did not significantly differ between those females
who did or did not give birth (t = 0.26, df = 53, P = 0.79;
Supplementary Table S3). In general, for those females that gave
birth, FGCM levels slightly increased over the course of gestation
until birth, followed by a decrease after parturition, and then a
slight increase at weaning (Fig. 1A). GC levels differed between
treatment groups, with solitary females exhibiting the most dra-
matic changes in FGCM levels. Solitary females had the highest
peaks and the lowest nadirs in FGCM concentration of all treat-
ment groups with control group females exhibiting the highest
FGCM concentrations during pregnancy (Fig. 1A). Dominant
(Fig. 1B) and subordinate (Fig. 1C) females belonging to each
treatment group generally had similar FGCM concentrations dur-
ing the course of the experiment. However, the general pattern of
rise in GCs during gestation and fall after parturition remained
consistent for all treatment groups. The mixed-effects model of
FGCM concentration with the variables of time point, infestation
status, and social contact type suggested that infestation status and

the interaction between infestation status and social contact type
were key terms when assessed via consideration of P values and
Cohen’s d (Tables 2 and 3). Subsequent analysis of deviance
(type II test) revealed that social contact type, as well as the inter-
action between infestation status and social contact type, signifi-
cantly affected GC levels. Cohen’s d indicated that both of these
terms had moderate effects sizes while all others had small effects
sizes (Table 3).

Discussion

We hypothesized that flea infestation would increase GC levels in
A. cahirinus females, regardless of their social interactions. We
also hypothesized that GC levels would be highest in females
with lower social rank. Thus, we predicted that an interaction
between the stressors of flea infestation and social contact
would occur with FGCM levels highest in infested, subordinate
females and lowest in uninfested, solitary females. However, our
results only partly supported these predictions. In general, we
uncovered three trends related to FGCM concentrations during
our investigation of stress, social status, parasitic infestation, and
reproduction. First of all, GC levels changed during pregnancy
and birth, albeit not significantly. As expected, these levels rose
as pregnancy progressed, then fell after females gave birth.
However, FGCM concentrations did not rise more sharply in either
infested or subordinate females and FGCM levels also rose slightly
during lactation until weaning in all treatment groups. Secondly,
social hierarchy, where females were either dominant or subordin-
ate, did not necessarily impact GC levels. Rather unexpectedly, soli-
tary females had significantly higher FGCM levels than females
housed in pairs. Finally, contrary to our predictions, flea infestation
alone did not have a significant effect on female GC levels. We
found evidence for a significant interaction between the stressors
of parasitism and social contact; however, the relationship was
the opposite of what was expected. Solitary, uninfested females
had the highest FGCM levels of any treatment group and this result
was consistent throughout the reproductive period.

Changes in stress hormone levels during pregnancy are well-
documented in various mammalian taxa (Edwards and
Boonstra, 2018), including rodents (Atkinson and Waddell,
1995). Gestation is considered an important physiological stres-
sor. Stress hormone levels typically increase steadily over each tri-
mester of pregnancy and then drop sharply after parturition
(Edwards and Boonstra, 2018). Proximally, high GC concentra-
tions likely help meet metabolic demands during gestation
(Foley et al., 2001; Soma-Pillay et al., 2016). From an evolutionary
perspective, high maternal GC levels have several, more ultimate
benefits. Corticosteroids can promote foetal brain and lung devel-
opment during the last trimester of pregnancy (Mendelson, 2009)
and influence the start of mechanisms behind the process of
labour (Valenzuela-Molina et al., 2018). Higher prenatal GC
levels in pregnant females have also been linked to more attentive

Table 1. Schedule of time points for faecal collection along with a description of corresponding events and the phase of the study in which the time point takes
place

Time point Description Phase

T0 Baseline Pre-experimental treatment

T1 Early pregnancy (days 8–10) During experimental treatment

T2 Mid pregnancy (days 21–23) During experimental treatment

T3 Late pregnancy (days 34–36) During experimental treatment

T4 Post-parturition Post-experimental treatment

T5 Weaning Post-experimental treatment
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maternal responses after birth (Bardi et al., 2004). In addition,
high maternal levels of circulating GCs promote a decreased
response to acute stress during late-stage pregnancy allowing
for, in essence, a desensitization effect on the mother that is pro-
tective to the foetus (de Weerth and Buitelaar, 2005).

This same pattern of FGCM levels increasing over pregnancy
then dropping after birth occurred in our study animals as well,
although this pattern was not significant. However, this could
be because we also observed that FGCM levels rose again between
birth and weaning in all treatment groups. Such a pattern occurs
in some other mammals, such as domestic pigs (Sus domesticus),
where GCs rise approximately 24 h after birth and increase to a
peak at approximately 18 days post-weaning that corresponds to
estrus (Ash and Heap, 1975). Given that lactation is energetically
demanding (e.g. Butte and King, 2005; Speakman, 2008), it is
logical that GC levels might increase due to increased physio-
logical demands over the course of lactation.

Contrary to our predictions, solitary females had higher
FGCM levels than either dominant or subordinate females. This
is likely because isolation is more stressful than social contact
between two individuals for a social species like A. cahirinus.
Thus, no matter the social hierarchy position, living in a group
decreases allostatic load for gregarious species when compared
to solitary living. Indeed, when female laboratory mice are solitary
for short periods of time (7 days), they begin to exhibit a slight
increase in corticosterone levels as compared to females grouped
with either siblings or unfamiliar females for the same amount of
time (Bartolomucci et al., 2009). Similarly, female tuco-tucos
(Ctenomys sociabilis), which are colonial, communally breeding
rodents, exhibited higher FGCM concentrations when living
alone rather than when living in groups (Woodruff et al., 2013).
Unlike group-living animals, solitary tuco-tucos did not experi-
ence an afternoon decline in FGCM concentration and their cor-
ticosterone concentrations remained elevated throughout the day
(Woodruff et al., 2013). Thus, the challenge of living a solitary
lifestyle was more stressful than managing social interactions. In
this way, our results follow those of Ebensperger et al. (2011)
which showed that sociality in the communally-breeding rodent,
Octodon degus, had no effect on mean circulating GC levels and
that they were instead linked to reproductive effort rather than
social conditions. This implies that individual rodents belonging
to gregarious species could respond in a similar manner to envir-
onmental or social challenges, so long as they are housed in a
manner consistent with the group-living context in which these
species evolved.

Unexpectedly, females that were both solitary and unparasi-
tized had the highest GC levels. These results somewhat contra-
dict the earlier results of St. Juliana et al. (2014) that generally
found increased FGCM in rodents, including A. cahirinus,
infested with fleas, particularly so-called ‘body fleas’ like P.

Fig. 1. (A) Changes in mean faecal cortisol metabolite (FGCM) concentration for soli-
tary treatment groups for each time point (T0 through T5) in the experiment. Black
squares represent control females (group C0) and grey circles represent infested
females (group I0). (B) Changes in mean faecal cortisol metabolite (FGCM) concentra-
tion for dominant treatment groups for each time point (T0 through T5) in the experi-
ment. Black squares represent control females (group C1) and grey circles represent
infested females (group I1). (C) Changes in mean faecal cortisol metabolite (FGCM)
concentration for subordinate treatment groups for each time point (T0 through
T5) in the experiment. Black squares represent control females (group C2) and grey
circles represent infested females (group I2). Error bars are included for each
group at each time point.

Table 2. Summary of the mixed-effects model of female A. cahirinus faecal
FGCM levels for variables time point (TP), infestation status (IS), and social
contact type (SC)

Model Value S.E. df t P

Intercept 135.08 22.66 281 5.96 0.00

TP 5.49 6.73 281 0.82 0.41

IS (uninfested) 94.94 38.76 53 2.49 0.02

SC −17.55 21.50 53 −0.82 0.42

TP*IS
(uninfested)

−12.45 11.51 281 −1.08 0.28

TP*SC 3.55 6.38 281 0.56 0.58

SC* IS
(uninfested)

−61.94 36.95 53 −1.68 0.09

TP*SC*IS
(uninfested)

5.40 10.97 281 0.49 0.62

Note that the reference category for infestation status is ‘uninfested’.
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chephrenis. However, St. Juliana et al. (2014) also found that the
evolutionary relationship between flea and host species was crit-
ical. Thus, A. cahirinus, the principal host for P. chephrenis, had
a lower physiological stress response to this flea species when
compared to other rodents that did not have a tight evolutionary
association with this flea (St. Juliana et al., 2014). In addition,
St. Juliana et al. (2014) did not test infestation in the context of
social contact and used only a small number of nonparous
females. Considering that females, particularly pregnant females,
can have varied GC production depending on reproductive status
(Ash and Heap, 1975), the results of our investigation and those
of St. Juliana (2014) might not be directly comparable. In add-
ition, several other physiological mechanisms that were not mea-
sured can be responsible for regulating an individual’s return to
homeostasis following exposure to a stressor. For instance, the
autonomic nervous system reacts to a stressor by increasing the
levels of catecolamines in plasma (Mastorakos et al., 2005).
Additionally, corticotrophin-releasing hormone is the principle
regulator of the HPA axis itself and experiences negative feedback
from GCs (Jeannetaeu et al., 2012). However, these plasma hor-
mones can be difficult to measure without invasive procedures
that could themselves act as stressors and thus, FGCMs represent
a useful non-invasive method of assessing an individual’s
response to a stressor (Palme et al., 2005).

Instead of causing more stress to solitary animals, flea infest-
ation could have had a mitigating effect on isolation by promoting
grooming and thus decreased the physiological stress experienced
by solitary animals in the experiment. Grooming has been shown
to mitigate physiological stress in several species of mammals,
most frequently primates (Boccia et al., 1989; Gust et al., 1993,
Aureli et al., 1999, Shutt et al., 2007, Aureli and Yates, 2010). Like
positive social interactionwith conspecifics (Pinelli et al., 2017), auto-
grooming in rodents plays a role in reducing stress (Smolinsky et al.,
2009, Denmark et al., 2010). It is well-recognized that rodents groom
in both low-stress (i.e. comfort grooming) and high-stress (i.e. anx-
iety grooming) situations and that the types of grooming behavior
differ in each of these situations (Kalueff and Tuohimaa, 2004,
Smolinsky et al., 2009, Kyzar et al., 2011). However, rodents also
groom in response to outside factors, such as having water on their
pelage. Although this so-called artificial grooming is unrelated to
the levels of stress they experience (Smolinsky et al., 2009), rodents
engaging in artificial grooming, such as after being misted with
water, exhibit lower levels of depressive behavior (Shiota et al.,
2016). In the absence of positive social interactionswith conspecifics,
infestation with fleas could have decreased physiological stress via
stimulation of artificial grooming and thus lead to lower FGCM levels
in infested vs uninfested rodents in solitary treatment groups.

Finally, we were only able to test a simple social interaction
between two females and could not include more complex social

groupings. Various combinations of social contact, such as vary-
ing numbers of individuals per experimental group, and infest-
ation with other stressors, such limited resource availability,
could lead to different outcomes. Indeed, A. cahirinus that lose
body mass during flea infestation has higher FGCM levels than
those that do not (St. Juliana et al., 2014). Thus, unlike the ani-
mals that were fed ad libitum in our experiments, individuals
experiencing food scarcity and infestation could have different
levels of stress that might or might not be mitigated by social con-
tact. Thus, although our laboratory experiment might be missing
some elements found in natural populations (e.g. potential for lar-
ger colony sizes, food scarcity), it can nonetheless provide empir-
ical data that can inform future hypotheses and provide a basis for
the development of further experiments in the laboratory and in
the field. In any case, additional experiments combining parasit-
ism with other stressors animals commonly experience in nature
can greatly improve our understanding of the relative effects of
parasites and other potential environmental stressors along with
the types of sub-lethal fitness effects that parasitized animals
might incur in nature due to these stressors.

In conclusion, we found that although flea infestation and
social contact have significant effects on FGCM levels in repro-
ductive A. cahirinus, these potential stressors produced unex-
pected results in our experiment. Instead of having the lowest
levels of stress hormones, uninfested, solitary females had the
highest FGCM concentrations of any treatment group. This sug-
gests that both social contact and infestation mitigate stress in
pregnant rodents. Thus, although increased risk of parasitism
might be a cost of group-living, some gregarious host species
seem to developed effective techniques for minimizing this cost,
as in the Egyptian spiny mice used in our experiment. Further,
when examining control groups, solitary living appears to be an
even greater stressor than flea infestation, likely because infest-
ation elicits artificial grooming that reduces GC levels. Thus, for
A. cahirinus colonies in nature, the increased risk of infestation
that accompanies group living could be outweighed by the posi-
tive aspects of social contact within the colony. However, the
effects of this stress on offspring quality or quantity, and thus par-
ental fitness, remain poorly understood.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182019001185
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