Jenseits von Afrika: Wie Fruchtfliegen die Welt eroberten

Wissenschafter vermuteten bisher, dass Fruchtfliegen durch Veränderungen in ihren Genen vor rund zehntausend Jahren kältere Lebensräume erobern konnten. Ein Team um Christian Schlötterer von der Vetmeduni Vienna hat nun erstmals nachgeweisen, dass Tiere mit unterschiedlichen Genversionen des so genannten cramped-Gens auch unterschiedlich auf eine simple Änderung der Umgebungstemperatur reagieren. Die Ergebnisse haben Konsequenzen für das Verständnis der Evolution, sie wurden in PLoS Genetics veröffentlicht.

Fruchtfliegen, Drosophila melanogaster, lebten ursprünglich nur in Afrika südlich der Sahara. Vor 10.000 Jahren wanderten sie in Europa und Asien ein. Dort waren die Tiere mit Lebensbedingungen konfrontiert, die sich stark von denen unterschieden, die sie bis dahin gewohnt waren. Die Durchschnittstemperaturen in den neuen Lebensräumen waren deutlich tiefer, und so mussten sich die Tiere den neuen Lebensbedingungen anpassen. Nach tausenden Jahren Evolution unterscheiden sich heute Populationen im südlichen Afrika und in Europa sehr stark in Eigenschaften wir Färbung, Größe und Unempfindlichkeit bei Kälte.

Temperatur aktiviert Gene

Frühere Ergebnisse aus Schlötterers Gruppe ließen vermuten, dass nur ein einziges Gen mit dem Namen „cramped“, kurz crm, für das  Überleben der Fruchtfliegen in kälteren Klimaregionen verantwortlich sein könnte. Das crm-Protein, das aus dem crm-Gen entsteht, reguliert seinerseits die Aktivität anderer Gene. Welche Gene das sind, begann Jean-Michel Gibert in der Arbeitsgruppe von Christian Schlötterer, Leiter des Instituts für Populationsgenetik der Vetmeduni Vienna, zu untersuchen, inzwischen führt er seine Arbeit an der Universität Genf weiter. Gibert und Schlötterer konzentrierten sich in ihrer Arbeit auf Gene, die an der Entwicklung der Flügel beteiligt sind. Sie konnten zunächst nachweisen, dass das crm-Protein notwendig ist, um ein bestimmtes Gen, das so genannte cubitus interruptus- oder ci-Gen, auszuschalten. Bekannt war bereits, dass die Aktivität dieses ci-Gens von der Temperatur abhängig ist.

Unterschiedliche Auswirkungen

Wenn nun das crm-Protein für die allgemeine Reaktion der Fliegen auf Temperaturänderungen wichtig ist, dann sollten europäische Varianten des crm-Gens bei Temperaturänderung andere Funktionen haben als Varianten aus dem südlichen Afrika. Die Forscher untersuchten also bei Tieren mit diesen verschiedenen crm-Varianten, wie sich Temperaturänderungen einerseits auf die Aktivität von ci-Genen, andererseits auf Merkmale der Fliegen wie Farbe des Hinterleibs bei Weibchen oder auf die sogenannten „sex combs“ auswirken, das sind kleine bürstenartige Strukturen an den Beinen der Männchen. Auch die Ausformung dieser Merkmale ist bekanntermaßen von der Umgebungstemperatur abhängig. Die Ergebnisse waren eindeutig: Unterschiedliche crm-Genversionen, auch Allele genannt, führten bei Änderung der Temperatur zu unterschiedlichen Ausformungen der Hinterleibsfarbe und der “sex combs“.

Übergeordnete Gensteuerung

Diese Ergebnisse legen nahe, dass die Unterschiede in den crm-Genen die Auswirkung geänderter Temperaturen auf die Fliegen gedämpft haben könnten. Daraus ergibt sich eine völlig neue Sicht auf die Art, wie Evolution funktioniert. Schlötterer dazu: „Normalerweise stellen wir uns Evolution so vor, dass in ihrem Lauf  neue Eigenschaften erworben werden. Die Anpassung der Fruchtfliege an eine kältere Umgebung scheint aber durch Änderungen eines übergeordneten genetischen Steuermechanismus entstanden zu sein, um sicher zu gehen, dass einzelne Prozesse weiterhin funktionieren, trotz geänderter Umweltbedingungen.“

Der Artikel “Segregating Variation in the Polycomb Group Gene cramped Alters the Effect of Temperature on Multiple Traits” von Jean-Michel Gibert, François Karch and Christian Schlötterer wurde von der Zeitschrift PLoSGenetics veröffentlicht.

Der wissenschaftliche Artikel im Volltext 1

 
 

Rückfragehinweis

Prof. Christian Schlötterer
T +43 1 25077-4300
E-Mail an Christian Schlötterer senden


 

Aussender

Mag.rer.nat. Klaus Wassermann