Goals and Model Local Adaptation Detection of Outliers Conclusions

The effects of epistasis and pleiotropy on local adaptation and the detection of adaptive outlier loci

Reinhard Bürger

Department of Mathematics

Vienna, 14 February 2019, SMBE Satellite Meeting

'Towards an integrated concept of adaptation: uniting molecular population genetics and quantitative genetics'

oals and Model Local Adaptation Detection of Outliers Conclusions

Collaborators¹

Adam G. Jones

Stevan J. Arnold

¹AG Jones, SJ Arnold, R Bürger: The effects of epistasis and pleiotropy on genome-wide scans for adaptive outlier loci. J. of Heredity, online (2019)

Goals and Model Local Adaptation Detection of Outliers Conclusion:

Goals

- Model the evolution of two quantitative traits in a pair of populations that are subject to selection towards different phenotypic optima and exchange migrants
- Investigate how quantitative genetic architectures that include pleiotropy and epistasis affect
 - Ability of populations to adapt to their local optima
 - Patterns of differentiation between locally adapted populations
 - Efficacy of genome-wide scans for selection based on outlier loci

Selection and migration

- In each of two demes, there is a symmetric bivariate
 Gaussian selection surface with no correlational selection
- Migration is symmetric and the migration probability m is varied between 0 and 0.256

(Units are environmental standard deviations)

Simulation model

- Individual-based forward-in-time simulation of diploids with separate sexes and polygyneous mating system
- · Life cycle:

Goals and Model Local Adaptation Detection of Outliers Conclusion:

Genetic system

- Genome consists of marker loci and of QTL
- A QTL may affect only trait 1, only trait 2, or be pleiotropic
- Marker loci are arranged in linkage groups, each of which has a specified recombination rate R
- R= Expected number of recombination events per meiosis per individual; $0.1 \le R \le 4$; typical value R=0.25
- Each linkage group contains between 500 and 10000 evenly spaced markers; typical value: 2000
- Each linkage group contains 1 5 QTL (at random positions)

Goals and Model Local Adaptation Detection of Outliers Conclusions

Genetic system

- Mutations at QTL are drawn from univariate or bivariate normal distributions and added to existing effects
- Markers are allowed to have up to four alleles
- Mutations at markers result in one of the other allelic types
- Epistasis is implemented according to the multivariate version of the multilinear model of Hansen and Wagner (2001); see Jones et al. (2014)
- In the multilinear model a gene substitution can change the phenotypic effect of any other gene or genotypic substitution, but only as a linear function of its own phenotypic effect

The multilinear model for a bivariate trait and pleiotropic effects

- Let (ξ_1, ξ_2) be the bivariate value of an arbitrary (multilocus) reference genotype (e.g., the population mean).
- Let $(y_1^{(i)}, y_2^{(i)})$ be the effect of a genotype at locus i if substituted into the reference genotype.

With two loci and, therefore, only pairwise epistatic interactions, the genotypic value x_1 of trait 1 is

$$x_1 = \xi_1 + y_1^{(1)} + y_1^{(2)}$$

The multilinear model for a bivariate trait and pleiotropic effects

- Let (ξ_1, ξ_2) be the bivariate value of an arbitrary (multilocus) reference genotype (e.g., the population mean).
- Let $(y_1^{(i)}, y_2^{(i)})$ be the effect of a genotype at locus i if substituted into the reference genotype.

With two loci and, therefore, only pairwise epistatic interactions, the genotypic value x_1 of trait 1 is

$$x_1 = \xi_1 + y_1^{(1)} + y_1^{(2)} + \epsilon_{111}^{(1,2)} y_1^{(1)} y_1^{(2)}$$

Goals and Model Local Adaptation Detection of Outliers Conclusions

The multilinear model for a bivariate trait and pleiotropic effects

- Let (ξ_1, ξ_2) be the bivariate value of an arbitrary (multilocus) reference genotype (e.g., the population mean).
- Let $(y_1^{(i)}, y_2^{(i)})$ be the effect of a genotype at locus i if substituted into the reference genotype.

With two loci and, therefore, only pairwise epistatic interactions, the genotypic value x_1 of trait 1 is

$$x_{1} = \xi_{1} + y_{1}^{(1)} + y_{1}^{(2)} + \epsilon_{111}^{(1,2)} y_{1}^{(1)} y_{1}^{(2)} + \epsilon_{112}^{(1,2)} y_{1}^{(1)} y_{2}^{(2)} + \epsilon_{121}^{(1,2)} y_{2}^{(1)} y_{1}^{(2)} + \epsilon_{122}^{(1,2)} y_{2}^{(1)} y_{2}^{(2)}$$

where $\epsilon_{abc}^{(i,j)}$ measures the epistatic effect on trait a of the interaction between the effects of locus i on trait b and locus j on trait c.

The multilinear model

- For two traits and n pleiotropic QTLs, there are 4n(n-1) pariwise epistatic coefficients $\epsilon_{abc}^{(i,j)}$
- We draw the coefficients $\epsilon_{abc}^{(i,j)}$ from a normal distribution with

$$E(\epsilon) = 0$$
 and $Var(\epsilon) = \sigma_{\epsilon}^2$

(on average, positive and negative epistatic effects cancel)

- Epistasis coefficients remain constant during each run
- An independent environmental effect (from a standardized normal distribution) is added to the genotypic values

Goals and Model Local Adaptation Detection of Outliers Conclusion

Implementation

- Long burn-in period, so that initial populations are approximately in migration-selection-mutation-drift balance
- Quantities of interest are measured during 2000 experimental generations, and then averaged
- There are 30 replicate runs for each parameter combination; each replicate run starts from new allelic values, new randomly chosen epistatic parameters, and new locations for the QTLs

Epistasis and local adaptation: weak migration

Epistasis and local adaptation: strong migration

Local adaptation: epistasis but no pleiotropy

Mean of trait 1 as a function of the migration rate:

Trait optima at $(z_1, z_2) = (\pm 4, 0)$; N = 500; each trait determined by 4 QTL.

pals and Model Local Adaptation Detection of Outliers Conclusions

Local adaptation: epistasis but no pleiotropy

Means of traits 1 and 2 as functions of the migration rate

Trait optima at $(z_1, z_2) = (\pm 4, 0)$; N = 500; each trait determined by 4 QTL.

Local adaptation: epistasis and pleiotropy

Mean of trait 1 as a function of the migration rate:

Trait optima at (1,2) at $(z_1,z_2)=(\pm 4,0)$; N=500; 4 pleiotropic QTL.

Local adaptation: epistasis but no pleiotropy

Variances of traits 1 and 2 as functions of the migration rate

Trait optima at $(z_1, z_2) = (\pm 4, 0)$; N = 500; each trait determined by 4 QTL.

Local adaptation: epistasis but no pleiotropy

Variance of trait 2 as a function of the migration rate

Trait optima at $(z_1, z_2) = (\pm 4, 0)$; N = 500; each trait determined by 4 QTL.

Local adaptation: epistasis and pleiotropy

Variance of trait 1 as a function of the migration rate

Trait optima at (1,2) at $(z_1,z_2)=(\pm 4,0)$; N=500; 4 pleiotropic QTL.

Local adaptation: epistasis and pleiotropy

Variance of trait 2 as a function of the migration rate

Trait optima at (1,2) at $(z_1,z_2)=(\pm 4,0); N=500;$ 4 pleiotropic QTL.

Manhattan plots: no epistasis or pleiotropy

Manhattan plots: epistasis but no pleiotropy

Manhattan plots: pleiotropy and m = 0.016

Number of outliers and "true" outliers

30 simulation runs with 4 linkage groups and 1 QTL per group ightarrow 120 QTL in total

Histograms showing distributions of F_{ST} of trait 1 and trait 2 QTL (no pleiotropy, m=0.016)

30 simulation runs with 4 linkage groups and 1 QTL per group \rightarrow 120 QTL in total; Red: QTL identified as outlier (by an outlier marker in the vicinity)

pals and Model Local Adaptation Detection of Outliers Conclusions

Relationship between QTL F_{ST} and between-population difference in mean allelic effects (no pleiotropy)

Between-Population Difference in Mean Allelic (Reference) Effect

Data as above; red diamonds indicate QTL identified as outlier

oals and Model Local Adaptation Detection of Outliers Conclusions

Patterns of F_{ST} for pleiotropic QTL without epistasis

30 simulations, m = 0.016; red diamonds indicate loci identified as outlier

oals and Model Local Adaptation Detection of Outliers Conclusions

Conclusions: Means

- Population means converge to values determined by migration-selection balance that are essentially independent of epistasis and pleiotropy
- Increasing migration leads to strong displacement from the optimum and to a dramatic increase in genetic variance
- Most divergence and increase in variance is caused by a small number of QTL, as the majority of QTL have small F_{ST} values and contribute little to (additive) variance.

Goals and Model Local Adaptation Detection of Outliers Conclusions

Conclusions: Variances

- Most of the genetic variance is additive genetic variance, even if epistasis is very strong (more than 85%)
- Epistasis and pleiotropy cause a considerable increase of the variance of trait 2, in particular, for weak to moderate migration
- Epistasis and pleiotropy may cause a slight decrease of the variance of trait 1

pals and Model Local Adaptation Detection of Outliers Conclusions

Conclusions: Outliers

- Under most circumstances, some outlier loci were detected, in no case all
- Even with 20 QTL per trait (5 per linkage group), our analyses never identified more than 2.5 true QTL
- More markers per linkage group increase the number of false positives substantially, but the number of true positives only slightly.
- The number of detected QTL depends only weakly on the recombination rate (0.1 - 4), selection intensity, population size (250 - 4000), and sample size (10 - 500)
- Pleiotropy had little influence on outlier detection
- ullet Epistasis tends to reduce F_{ST} and makes the causal QTL less detectable

THANK YOU!

Table 6

Variable of	σ_{ε}^2	Mean	Mean	Mean	No.	No.	No.	No.	No.	No.
Interest and		Marker	Trt 1	Trt 2	Smoothed	Near	Near	W&L	Near	Near
Its Value		F_{ST}	QTL	QTL	F_{ST}	Trt 1	Trt 2	F_{ST}	Trt 1	Trt 2
			F_{ST}	F_{ST}	Outliers	QTL	QTL	Outliers	QTL	QTL
Carrying										
Capacity										
K = 250	0	0.0172	0.1046	0.0175	4.800	1.700	0.133	3.533	1.433	0.067
K = 250	1.6	0.0172	0.0461	0.0484	5.300	0.700	0.867	3.500	0.633	0.733
K = 4000	0	0.0380	0.1415	0.0382	4.333	2.433	0.200	5.000	2.333	0.200
K = 4000	1.6	0.0409	0.1499	0.0741	3.967	1.700	0.467	4.867	1.533	0.667
Sample Size										
S = 10	0	0.0433	0.1641	0.0445	4.767	1.733	0.300	3.500	1.200	0.100
S = 10	1.6	0.0453	0.0868	0.0810	4.500	0.800	0.733	3.667	0.500	0.467
S = 500	0	0.0271	0.1271	0.0284	4.700	1.967	0.333	6.333	2.067	0.567
S = 500	1.6	0.0300	0.0765	0.0795	4.767	0.900	0.667	6.000	0.933	0.833
Selection										
Strength										
$\omega_{11} = 19$	0	0.0922	0.3091	0.0757	4.500	1.633	0.267	2.133	0.600	0.167
$\omega_{11} = 19$	1.6	0.1081	0.2356	0.1925	4.267	1.000	0.633	1.767	0.067	0.067
$\omega_{11} = 99$	0	0.0177	0.0761	0.0163	4.633	1.567	0.133	6.967	1.733	0.400
$\omega_{11} = 99$	1.6	0.0182	0.0550	0.0382	4.467	0.867	0.600	6.067	0.867	0.667
Epistasis										
Amount										
$\sigma_{\varepsilon}^2 = 0.4$	0.4	0.0306	0.1075	0.0480	4.667	1.200	0.433	5.467	1.200	0.567
$\sigma_{\varepsilon}^2 = 0.8$	0.8	0.0296	0.1005	0.0605	4.900	1.167	0.567	6.000	1.233	0.600
$\sigma_{\varepsilon}^2 = 3.2$	3.2	0.0313	0.0752	0.686	4.433	0.900	0.633	5.867	0.900	0.600
$\sigma_{\varepsilon}^2 = 6.4$	6.4	0.308	0.0879	0.0710	4.433	0.933	0.633	5.933	0.933	0.633

Table 6

No. Marker	σ_{ε}^2	Mean	Mean	Mean	No.	No.	No.	No.	No.	No.
Loci per		Marker	Trt 1	Trt 2	Smoothed	Near	Near	W&L	Near	Near
Linkage Grp		F_{ST}	QTL	QTL	F_{ST}	Trt 1	Trt 2	F_{ST}	Trt 1	Trt 2
			F_{ST}	F_{ST}	Outliers	QTL	QTL	Outliers	QTL	QTL
$n_{\rm m} = 500$	0	0.0305	0.1459	0.0270	1.700	1.100	0.467	2.333	1.533	0.533
$n_{\rm m} = 500$	1.6	0.0306	0.1035	0.0633	1.533	0.833	0.533	2.467	1.233	0.867
$n_{\rm m} = 10,000$	0	0.0285	0.1399	0.0326	14.800	1.833	0.167	17.067	1.633	0.133
$n_{\rm m} = 10,000$	1.6	0.0313	0.1021	0.0575	16.333	0.767	0.433	15.400	0.800	0.333
No. QTL per										
Linkage Grp										
$n_{q1} = n_{q2} = 2$	0	0.0289	0.1372	0.0291	4.900	2.033	0.267	5.967	2.100	0.333
$n_{q1} = n_{q2} = 2$	1.6	0.0301	0.0984	0.0601	4.933	0.933	0.667	5.733	0.900	0.833
$n_{q1} = n_{q2} = 5$	0	0.0273	0.0730	0.0284	4.467	2.333	0.533	5.267	2.333	0.700
$n_{q1} = n_{q2} = 5$	1.6	0.0287	0.0544	0.0407	4.900	1.467	0.900	5.267	1.367	1.100
Recomb. Rate										
R = 0.10	0	0.0394	0.1442	0.0350	4.300	1.500	0.167	2.933	0.900	0.033
R = 0.10	1.6	0.0401	0.1104	0.0687	4.267	0.867	0.633	3.200	0.467	0.333
R = 4.00	0	0.0209	0.1166	0.0180	4.133	1.567	0.100	9.567	1.700	0.633
R = 4.00	1.6	0.0222	0.0827	0.0466	3.567	0.967	0.633	9.300	1.200	0.767

ioals and Model Local Adaptation Detection of Outliers Conclusions

Relationship between the between-population difference in mean allelic effects and the within-population variance in allelic effects with and without pleiotropy and epistasis

