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How is phenotypic variation encoded in the human genome?
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GWAS have been hugely successful
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Fundamental question: which genes, pathways, and function do trait
associated variants affect?
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All with have to do is to perform
bigger GWAS and find which genes
are in associated loci?




Today’s presentation:

« For typical complex traits, most of the heritability
IS mediated through genes that are not directly
related to the trait



Today’s presentation:

« For typical complex traits, most of the heritability
IS mediated through genes that are not directly
related to the trait

* We need new conceptual models for thinking
about the molecular processes that link genetic
variation to complex phenotypes



Observation #1: For many traits, there is a huge
number of causal variants across the genome
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Most complex traits are polygenic.
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Most complex traits are polygenic.

108 genome-wide significant loci for

= | schizophrenia so far (Ripke 2014)

24 | Responsible for only ~10% out of 80% of
i ’- genetic variance (Shi...Pasaniuc 2016)
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Schizophrenia is hugely polygenic.

4% |

schizophrenia

heritability
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¥ g} 13 2015.
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» At a broad scale, causal SNPs are spread widely across the genome

» Loh et al: >70% of MB windows in the genome contribute to
schizophrenia heritability



fraction of estimated heritability

Nearly all complex traits show a strong polygenic signature

at a broad scale
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» 30 traits were considered ranging from autoimmune diseases, to anthropomorphic

traits, to metabolic traits, etc...

Shi et al. AJHG 2016




fraction of estimated heritability

Nearly all complex traits show a strong polygenic signature

at a broad scale

0.2 =
MCH
D1 5 B MY
HEB
FIBIG
01 FHOL .
10 |
e T II-E:'FH.'.- = I | : |
0.05|- Sk 1 = | .
' = of - T = Tk L 4L 2y T e
. : i - . TMCH B
_‘:_ﬁﬁ‘-f H "'HW’ - - e , s — F MCHE R
== = Ti-ﬁml: - - - Aa
0 21 22 20 18 19 17 14 15 13 16 12 10 T 11 L 8 4 5 6 3 1
chromosome

» 30 traits were considered ranging from autoimmune diseases, to anthropomorphic
traits, to metabolic traits, efc...

» Polygenic architecture inconsistent with the view that trait-variants are all located

near genes with direct effects on trait/disease. :
Shi et al. AJHG 2016




Observation #2: Many groups have shown that GWAS signals
are enriched in chromatin that is active in cell-types that
“make sense”...

...but surprisingly, it doesn’t matter much whether the
chromatin is broadly active, or active only in relevant cell types



GWAS signals are enriched in chromatin that is active in cell-types that
“make sense”.
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Connective

Analysis by Stratified LD Score regression
[Finucane...Alkes Price (2015) NG]

» GWAS SNPs generally affect cell-type-specific processes (classical view).
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Three types of chromatin regions:
In principle we might expect cell type-specific open
chromatin to be most enriched in disease heritability



Per-SNP heritability is similar in cell type-specific vs
broadly active chromatin
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Observation #3: Enrichment analysis of rare variants
or strongest GWAS hits often identifies key genes and
pathways....

....but most of the heritability is broadly
distributed across genes with diverse functions.



Heritability: Gene Ontology enrichments
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Heritability: Gene Ontology enrichments
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> Relevant functional categories are enriched in heritability. | Finucane etal
» For both diseases the category that explained the most heritability was simply

the largest category, i.e. “protein binding”.




Our model to describe the data:
The “omnigenic” model
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Our model to describe the data:
The “omnigenic” model

3 types of genes:

 Tier 1: Core genes: direct roles in disease

* Tier 2: Peripheral genes: all other expressed genes may affect
the regulation of core genes

* Tier 3: Genes not expressed in the “right” cell types do not
contribute to heritability

Can explain why most phenotypic variance could be due to
genetic variants affecting peripheral genes




Hypothetical scenario: Peripheral genes outnumber core
genes by ~¥100:1, and so they can dominate the phenotypic
variance.

Core genes
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Proposed mechanism: Possibly through weak

effects rippling through gene or PPl networks? (Boyle, Li, and Pritchard, 2017)




Starting point of a quantitative phenotype model

1) Genes with direct effect on phenotypes are defined to be core genes

corecenes [l 1 I 1

\//

Phenotype



Starting point of a quantitative phenotype model

1) Genes with direct effect on phenotypes are defined to be core genes

!rans effects
Coding sequenCem—

Core genes . .#.#.’ Gene regulation

\l//

Phenotype

Phenotype = coding + regulatory variation



Starting point of a quantitative phenotype model
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Starting point of a quantitative phenotype model

Bulk of phenotypic variation is explained by variation in core ¢gene
regulation.
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A simple phenotype model based on expression of core genes

Sum over M
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Core gene expression variance partitions into: 1
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Core gene expression variance partitions into: I
Z ; Var(x)

1) Variance from cis (nearby) core genes. =1
2) Variance from trans (far from) core genes (likely cis to peripheral)
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Literature review: genetic variance in gene

expression
Percent h? in trans Tissue/ organism Platform Sample size Method
88% LCL from admixed inds  Affymetrix Array 89 African-European ancestry
7T6%, 61% Drosophila, whole body RNA-seq multi-fly pools fly hybrids
76%, 63% adipose, blood custom array 638, 687 cis/trans IBD in families
T0%, 65%, 64% adipose, LCL, skin Illumina Array 856 twin design
T7%, 69% peripheral blood Affymetrix Array 2,752 twin design, LD Score
2% yeast segregants RNA-seq 1012 cis vs. trans eQTLs
62% mouse liver RNA-seq 192 GCTA
2% mouse liver (proteins) Mass Spec 192 GCTA
T8% human plasma (proteins) protein aptamers 3301 LD Score Regression
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~70% in trans




Only a minority of the trait heritability is expected to come from variants
cis to core genes

~70% of expression
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Only a minority of the trait heritability is expected to come from variants
cis to core genes

~70% of expression
variance in trans

Peripheral , :
genes / I
...== <. lrans effectsl ~30% of expression
.. 5 i variance in cis

Core genes

Phenotype

~30% of heritability cis to core genes

If a trait depends on the expression level of a single core gene, most genetic variance for
this trait would be explained by variants located far away.



How many frans effects?

Model A:
Few trans-acting variants,
some with big effects

~70% of variance in trans
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How many frans effects?

Model A: Model B:
Few trans-acting variants, Many trans-acting variants,
some with big effects all with small effects

~70% of variance in trans
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Trans eQTLs have very small effect sizes
compared to cis
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(Liu, Li, and Pritchard, bioRxiv, 2018)
Plot shows effect sizes of strongest cis and trans
signals from Wright et al. 2014 replicated in
DGN




Together these observations imply that a typical gene
must have huge numbers of weak trans-regulators

~70% of variance in trans Trans effect much smaller than cis
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(Liu, Li, and Pritchard, bioRxiv, 2018)




Together these observations imply that a typical gene
must have huge numbers of weak trans-regulators

~70% of variance in trans

an

VI

So assuming > tens of core genes,
this model explains why such a large
fraction of the genome can
contribute to any given complex
trait

(Liu, Li, and Pritchard, bioRxiv, 2018)




Co-regulation of core gene expression can amplify the contribution of trans-
variation/peripheral genes.

M M
Z q-fVar(x.j) Z 1 Cov(x.;, x.x | + Var(e)
j=1 j#k

(Liu, Li, and Pritchard, bioRxiv, 2018)



Co-regulation of core gene expression can amplify the contribution of trans-
variation/peripheral genes.
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If (1) core gene expression levels are positively correlated, and (2) core genes have coordinated effects,
then covariance term starts to contribute to phenotypic variance.

(Liu, Li, and Pritchard, bioRxiv, 2018)



Co-regulation of core gene expression can amplify the contribution of trans-
variation/peripheral genes.

M M
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If (1) core gene expression levels are positively correlated, and (2) core genes have coordinated effects,
then covariance term starts to contribute to phenotypic variance.

Genetic covariance likely to come from trans-effects.

(Liu, Li, and Pritchard, bioRxiv, 2018)



Co-regulation of core gene expression can amplify the contribution of trans-
variation/peripheral genes.
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Estimated genetic correlation from real data = 0.12 (data from Lukowski et al., 2017)

(Liu, Li, and Pritchard, bioRxiv, 2018)



Summary: Part 1

Three main observations suggest that:
* Most heritability is due to SNPs outside core genes/pathways.
» All genes expressed in disease-relevant cells may affect the regulation of

core genes. Thus, most effects are “peripheral”.

We refer to this hypothesis as an “omnigenic”” model.

(Boyle, Li, and Pritchard, 2017)



Summary: Part 2

The omnigenic model is consistent with known properties of cis- and trans-
eQTLs (and likely other types of molecular QTLs)

 Variation in trans is responsible for ~70% of gene expression heritability
(implying that the bulk of complex trait heritability are likely to be

explained by trans-effects).

* Trans effect sizes are nearly all tiny, which implies that there are a huge
number of contributing genetic loci/peripheral gene.

 Co-regulation of core gene expression can amplify the contribution of
trans-variation/peripheral genes.

(Liu, Li, and Pritchard, bioRxiv, 2018)



Happy to take questions!
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24% of heritability is explained by SNPs
in DNase-| sites
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GWAS hits are enriched among functional SNPs
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We think of “Omnigenic” as having a more
precise meaning than “polygenic”

— 50 genes Polygenic Every SNP ‘l

1 n

Omnigenic
(every expressed gene in relevant
cell types may matter)



Small world property of networks: most nodes can be reached from
every other node by a small number of steps

“Small world” property: All possible pairwise genetic interactions
(Watts & Strogatz, 1998, Strogatz 2001) in yeast (Costanzo et al., 2016)

» Suggests that peripheral genes may be “close” to core genes.

» Network could be transcriptional, PPI, etc...



But SNPs in broadly expressed genes explain more total
heritability!
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Genes that do not have a direct function in disease pathways might play a
large role in disease



