Introgression of a block of genome with many weakly selected variants

Himani Sachdeva

IST Austria

Sachdeva and Barton, Introgression of a block of genome under infinitesimal selection, Genetics (2018). Sachdeva and Barton, Replicability of introgression under linked, polygenic selection, Genetics (2018).

Most traits are highly polygenic

From: Yang et al, Nature Rev Genet, 2011

- ullet $\mathcal{O}(10^5)$ common SNPso causal effects on height. [Boyle et al, 2017]
- infinitesimal model with linkage.

Infinitesimal model with linkage

Inheritance of **blocks** of genome:

Infinitesimal model with linkage

Inheritance of **blocks** of genome:

 $V_0 \approx$ heterogeneity along the genome.

Approaching the infinitesimal limit

• L loci (uncorrelated effects) spread uniformly.

 $V_0 = \sigma^2/r
ightarrow$ genic variance per unit map length

When can selection 'see' discrete loci?

Spread of a genome with linked, weakly selected variants

- Introgression due to weakly selected, linked loci vs. neutral introgression?
- What determines 'success' of different fragments of a block?

Initial spread of introduced genome: snapshots

Model as a branching process: at most 1 introduced fragment per individual

Initial spread of introduced genome: snapshots

Model as a branching process: at most 1 introduced fragment per individual

Rate of introgression

Exponentially fast vs. $\sim t$ spread Weakly selected variants $\stackrel{?}{pprox}$ neutral variants?

Medium-sized fragments drive exponential introgression

Fragment with map length y_* and trait value z_* :

- Typical $z_* \sim \pm \sqrt{V_0 y_*}$, assuming uncorrelated loci.
- $\beta z_* > y_* \Longrightarrow$ successful fragment that increases intact exponentially.
- Successful fragments: typical map length and growth rate $\propto \beta^2 V_0$.

 $eta
ightarrow {
m strength}$ of selection on trait; $V_0 = \sigma^2/r
ightarrow {
m variance}$ per unit map length

Introgression of individual variants: initial vs. long-term

80 copies of 40 cM block with 2048 loci ($eta\sigma=$ 0.0007) introduced into population (N= 4000).

Analytical solution for short-term dynamics

Expected growth rate of variant $\approx \beta z - y$ for fastest-growing *containing* fragment.

Introgression of individual variants: initial vs. long-term

80 copies of 40 cM block with 2048 loci ($eta\sigma=$ 0.0007) introduced into population (N= 4000).

Analytical solution for short-term dynamics

Expected growth rate of variant $\approx \beta z - y$ for fastest-growing *containing* fragment.

Long-term introgression: role of individual effects

Own effect \rightarrow fine-scale variation at long times in large populations.

Conclusions

- Linked variants crucial to polygenic adaptation.
- Exponential spread of genetic material even under infinitesimal selection.
- Successful fragments are medium-sized.
- **Two phases** of introgression: short-term (hitchhiking with single successful fragments) vs. long-term (partial purging of deleterious variants).
- Individual variants with high introgression probability may not be adaptive.

Understanding heterogeneous genomic landscapes

Understanding heterogeneous genomic landscapes

2-tiered description: Weak pairwise associations between linkage blocks?

Sweep signatures: one vs. multiple adaptive variants?

Sweep signatures: one vs. multiple adaptive variants?

Response from standing variation

- Spread of a single genome into a heterogeneous population?
- When does selection see discrete loci?
- Heterogeneity along the genome in the infinitesimal limit?

Wide distribution of fragment lengths

t=100 generations after the introduction event.

Introgression of a beneficial block

Long vs. short introduced blocks

Average length of surviving fragments.

Medium-sized blocks have longest descendant fragments.

To be a long block or not to be?

Depends on the initial advantage of the block.

