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Motivation

� Freiman et al. (1978) investigated 71 published
randomized controlled clinical trials that did not find
significant differences between groups:

� 67 of trials had risk > 10% to miss 25% therapeutic
improvement

� 50 of trials had risk > 10% to miss 50% therapeutic
improvement

� Many interesting/beneficial treatments might have been
missed due to low power!

Freiman J.A., Chalmers T.C., Smith H., Kuebler R.R. (1978) The importance of beta, the type II error and sample

size in the design and interpretation of the randomized control trial. Survey of 71 negative trials. N. Engl. J. Med.

299: 690-694.
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Guidelines

The number of animals in a clinical trial should always
be large enough to provide reliable answers to the
questions addressed.

European MEdicines Agency: Guideline on statistical principles for
clinical trials for veterinary medicinal products (2012).
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/01/WC500120834.pdf

. . . the number should be sufficient to achieve
worthwhile results, but should not be so high as to
involve unnecessary recruitment and burdens for
participants.

Guidance on sample size by the Central Office for Research Ethics
Committees (COREC) (2007)
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Under-powered and over-powered studies

� Under-powered studies: work with too small sample sizes,
risk of not finding interesting effects (more common)

� Over-powered studies: work with too large sample sizes,
smaller sample would have been sufficient

Both cases lead to waste of time and resources and may lead
to unnecessary harm of animals!
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Before determining sample size
we need

� research hypothesis
� determine type of data to be collected for answering the
research hypothesis

� statistical method to test research hypothesis, i.e. which
statistical test will be used?

6

Example
Renal function in older cats

� goal is to measure effect of a new treatment to improve
renal function of old cats

� plan to compare two groups (standard treatment/new
treatment)

� how to measure renal function?
� plasma urea and/or creatinine concentration?
� which of them should be primary outcome?
� distribution of outcome? (previous studies, or pilot study)
� if approx. normal plan to use two-sample t-test
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One or several outcomes?

� investigators often look at several outcomes
� if there is a primary outcome: power/sample size
computation usually done for primary outcome

� if no primary outcome can be chosen:
� sample size required should ensure sufficient power for all
outcomes!

� also multiple testing problem needs to be addressed
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Basics of hypothesis testing

� hypothesis tests used for decision between research
hypothesis (H1) and a null hypothesis (H0, no effect
hypothesis)

� hypothesis tests use a test statistic to measure the
evidence against null hypothesis

� p-values (∈ [0, 1]) are commonly used to summarize
evidence against H0

� small p-values (usually: p < 0.05) provide evidence
against null hypothesis
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True and wrong decision

correct hypothesis
decision for H0 H1
H0 true type II error
H1 type I error true
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Errors and power

� type I error: detect an effect when there is none
� hypothesis tests constructed such that

P(type I error) ≤ α = 0.05 (most common)

� type II error: not detecting an effect that is present
� power of a test: probability of correctly detecting an effect

power = 1− P(type II error)
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Power

For a given test, power depends on ...
� sample size
� permitted probability of type I error α
� actual size of effect
� power can depend also on nuisance parameters (most
common: standard deviation of
observations/measurements)

� one-sided vs. two-sided test
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One-sided and two sided test

� Two-sided tests (standard with statistical software): look at
deviations from null in both directions

� One-sided tests: look only at deviations from null in one
direction (e.g. improvement)

� One-sided tests appropriate, if known in advance that only
deviations from null in one direction either possible or of
interest

� If observed effect goes in assumed direction then:

p1 =
1
2

p2
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Example: power of z-test I

� consider sample X1, . . . ,Xn ∼ N(μ, σ2) with known
variance σ2.

� consider one-sided test: H0 : μ = 25, H1 : μ > 25
� z-Test at level α rejects H0, if

T =
√

n
X̄ − 25

σ
> Q(N)(1− α)

� under H0 distribution of T ∼ N(0,1)

z-test used to test for mean of normal sample with known
variance, or whether population proportion equals pre-specified
value
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Example: power of z-test II

distribution of T for general μ:
1. Here: X̄ ∼ N(μ, σ2/n)
2. Thus T ∼ N(γ,1), where γ = γ(μ) =

√
nμ−25

σ ,
with 25 value μ under H0.

3. so probability of rejecting H0:

P[T > Q(N)(1− α)] = P[T − γ > Q(N)(1− α)− γ]

= 1− Φ[Q(N)(1− α)− γ]
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Example: power of z-test III

numerical example
� α = 0.05, n = 25, σ = 5
� then g(μ)

g(μ) = 1− Φ[Q(N)(1− α)− γ] = 1− Φ[1.645− 5
5
(μ− 25)]

� e.g. g(26) = 1− Φ(0.645) ≈ 0.259
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Example: power of z-test IV

25 26 27 28 29 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mu

G
üt
e

power of one-sided z-test depending on μ. Further parameters:
α = 0.05, n = 25, σ = 5
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Power: different sample sizes
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Power: different magnitudes of individual variation
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power of one-sided z-test depending on μ for different error
SDs σ. (α = 0.05, n = 25)

19

Power of two-sided z-Test I

� From one-sided test we know:

T ∼ N(γ,1),

with γ = γ(μ) =
√

nμ−25
σ .

� reject now H0, if |T | > Q(N)(1− α/2). Thus rejection
probability:

1− P[−Q(N)(1− α/2) ≤ T ≤ Q(N)(1− α/2)] =
= 1− P[−Q(N)(1− α/2)− γ ≤ T − γ ≤ Q(N)(1− α/2)− γ]

= 1−
(
Φ[Q(N)(1− α/2)− γ]− Φ[−Q(N)(1− α/2)− γ]

)
,

with γ depending on μ .
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Power of two-sided z-Test II

Numerical Example
� α = 0.05, n = 25, σ = 5
� Then Q(N)(1− α/2) = 1.96 and γ(μ) = μ− 25, with 25
again the value of μ under H0.

� Thus power

g(μ) = 1− (Φ[(25− μ) + 1.96]− Φ[(25− μ)− 1.96])
� e.g. g(24) = 1− (Φ(2.96)−Φ(−0.96)) =
1− Φ(2.96) + 1− Φ(0.96)) ≈ 0.1701
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Power of two-sided z-Test III
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power of one-sided z-test depending on μ and n; further
parameters: α = 0.05, σ = 5
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Power one-sided vs. two-sided z-Test
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power of one-sided z-test depending on μ and n; further
parameters: α = 0.05, σ = 5
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Power versus sample size

� How to come up with an appropriate sample size when
designing a study?

� Standard approach: choose n such that desired power is
obtained for a given effect size

� For this purpose need to select:
� α usually = 0.05
� power usually ≥ 0.8
� effect size . . .more difficult to specify
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Choice of effect size

� Plausible effect size . . .
� from previous related studies
� from pilot studies
� minimal clinically relevant effect
� Cohen (1988) — not recommended
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Power versus sample size
Nnumerical example for one-sided z-test

� Necessary sample size for detecting effect size of 0.5 SDs
with probability 0.8? (α = 0.05)

� Solution: 1− Φ[Q(N)(1− α)− γ] = 0.8
� thus: 0.2 = Φ[Q(N)(1− α)− γ]

� and: Q(N)(0.95)− Q(N)(0.2) = γ

� 2.926 = γ =
√

nσ/2
σ

� therefore : n ≈ 25
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How about other tests?
Do I need to carry out computations by hand?

� Similar computations possible for many other tests:
� t-test, chi-square test, nonparametric tests, ANOVA,
regression,. . . ,

� distributions under alternative get often more complicated,
� but there are software packages available.

27

When can power be smaller than originally planned?

� wrong initial assumptions about effect size and/or random
variation in measurements

� non-response
� drop out (e.g. from long term studies)
� properties of data do not match original model
assumptions (e.g. normal distribution)
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What if budget permits only for a certain sample size?

� Assume that you know that your resources (budget or availability
of animals) only permit for a sample of size n. (e.g. n = 100)

� You can still compute which power to expect for this sample size
(given effect size, etc.)

� If power is too low, think about whether it is possible to improve
power by measures other than the sample size
(more sophisticated design, more precise measurements,
different response definition–that permits to see larger effects)

� If sufficient improvements in power are impossible, think whether
it makes sense to carry out the proposed investigation.

� If power is too high (not so common), you can save some
resources.
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What if several hypotheses tested?

� One hypothesis selected in advance as being of primary interest
� Sample size computed for this hypothesis

� Several hypotheses equally interesting (e.g. questionnaire)
� Sample sizes should be sufficient for all these hypotheses
� Multiple testing should be taken into account!
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Multiple testing I

� If many hypotheses are tested, chance rises to obtain
some falsely rejected null hypotheses.

� Example 100 tests at level α = 0.05, assume H0 to be true
in all cases.

� How many falsely rejected null hypotheses would we
expect?

� Five, and with independent test statistics probability 0.994
of at least one false rejection.

31

Bonferroni correction for multiple testing

If total of k hypotheses:
� test each hypothesis at level α/k ,
� equivalent: multiply al p-values by k .
� Ensures that “familywise error” (prob. of one or more false
rejections) stays below α

� There are more complex multiple testing procedures that
exploit special problem structures (e.g. Tukey test for all
pairwise comparisons, Dunnett test for multiple
comparisons with a control)
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Examples

� Three hypothesis tests in an investigation gave
following-values:

� Test I: 0.03, Test II: 0.12, Test III: 0.004
� Bonferroni–corrected p-values: Test I: 0.09, Test II: 0.36,
Test III: 0.012

� After Bonferroni correction (for α = 0.05) H0 rejected only
got test III
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Consequence for power-sample size computations

If total of k hypotheses:
� sample size computations required at level α/k
� depending on k , considerably larger sample sizes needed!
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Example

� One-sided z-test for k = 1 and k = 10, α = 0.05
� Desired power 0.8
� Effect size 0.5σ
� Then n1 = 25 (k = 1), and n10 = 47 (k = 10).
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Comparing multiple treatments with control

� Dunnett test
� Optimum Allocation of sample size between k treatments
and control:

� if sample size for each treatment is n, control group should
get

√
kn observations to minimize total sample variance.
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Parametric versus Nonparametric Tests

� Parametric tests have a slightly higher power than
non-parametric tests, if data follow the more stringent
distributional assumptions (often normal distribution).

� If distributional assumptions for parametric test are not
satisfied, nonparametric tests often have a higher power.

37

Sample size computations in equivalence and
non-inferiority trials

� Sometimes sufficient to show that new treatment is
equivalent to established intervention

� Reasonable when new treatment has fewer side effects, is
less expensive, or has other benefits

� Exact equivalence cannot be shown with finite sample
sizes–need to show essential equivalence

� In practice: specify difference δ, and call the treatments
essentially equivalent, if they differ by no more than δ.

� Here alternative hypothesis is essential equivalence, null
hypothesis is difference by more than given margin

� Power/sample size computation based on margin δ.
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Repeated measurements and experimental units

� Notice that repeated measurements on the same animal do not
lead to independent observations. Dependencies need to be
taken into account in power/sample size computations!

� Further challenge: need to know about type and amount of
dependence at planning stage

� Power computations should be done in terms of experimental
units–the smallest unit to which treatment can be randomly
assigned.

� Depending on type of investigation, experimental unit can be
animal, part of animal (eye, leg), or collection of animals (herd,
pen, aquarium)

� Dependencies sometimes exploited by clever design to reduce
random variation—thus not necessarily bad
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Further strategies to increase power

� Reduce Variation:
� improve accuracy of measurements (if measurement error
is an issue)

� exploit dependencies-comparison done on otherwise
similar subjects (if large interspecific variation)

� homogeneous group(s), cross-over trials, matched pairs
design
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Group sequential and adaptive designs

� In group sequential designs, data are collected in batches
� between batches interim analyses, are conducted
� early stopping possible under previously defined
circumstances (such as: negative treatment effect,
negative side effects, futility, positive effect already clear at
earlier stages)

� Adaptive Design: Some changes (e.g. sample size) in plan
for later stages possible–needs careful specification of
action plan in advance
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Bias in (published) studies with low power

� Studies with low power tend to report upward biased effect
size estimates

� If power is low, significant results are only obtained when
data lead to large effect size estimates.

� If no significant results are obtained (cases when
estimated effect size estimates are smaller), results are
often not published or reported.

� Overall, low power per se does not lead to biased
estimates–but leads to a biased picture in connection with
common reporting & publication practices.

42

High power does not protect against other sources of
bias

� bad randomization
� lack of (double-)blinding
� biased sampling in situations involving inference from
sample to population

� non-response bias
� recall bias in retrospective studies . . .
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Experiments versus observational studies

� Power/sample size computations work the same way both
for experiments and observational studies

� Keep in mind, however, that it is considerably more difficult
to establish causal relationships from observational studies
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Unless lots of resources:
Do not try to answer all questions you may possibly have in one investigation

� Many covariates in a model –require large samples!
� When studying treatment for renal function, no point in
investigating 7 breeds of cats, both male and female over a
large age range unless you plan to take very large samples
(why?)
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Post-Hoc Power Analysis

� Sometimes power/sample size analysis done post-hoc, i.e.
after collecting & analyzing the data, especially when no
significant results were obtained.

� May help for sample size planning when designing further
studies.

� Be careful, what is wrong with the following argument?
� Suppose we do not get a significant p-value, although a
medium effect size was estimated from our data. A
post-hoc power analysis shows a low power for this effect
size.

� We then argue that the data suggest a medium size effect,
and add that the only reason for not obtaining a significant
p-value is that–unfortunately–the power was too low.
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Literature

� Several textbooks on biostatistics and statistics in medicine
contain material on power/sample size computations:

� L.M. Friedman et al. Fundamentals of Clinical Trials,
Springer 2010.

� S.-C. Chow and J.-P. Liu. Design and Analysis of Clinical
Trials: Concepts and Methodologies, Wiley 2004.

� M. Schumacher, G. Schulgen. Methodik klinischer Studien:
Methodische Grundlagen der Planung, Durchführung und
Auswertung. Springer, 2008.

� S.-C. Chow, M. Chang. Adaptive Design Methods in Clinical
Trials. Chapman & Hall, 2011.

47

Literature

� Short discussion/reviews in papers:
� E. McCrum-Gardner(2010): Sample size and power
calculations made simple. International Journal of Therapy
and Rehabilitation, 17, 1.

� S.R: Jones et al. (2003) An introduction to power and
sample size estimation. Emerg. Med. J. 20: 453-458.

� Lenth, R. V. (2001), “Some Practical Guidelines for Effective
Sample Size Determination,” The American Statistician, 55,
187-193.

� Hoenig, John M. and Heisey, Dennis M. (2001), “The Abuse
of Power: The Pervasive Fallacy of Power Calculations for
Data Analysis,” The American Statistician, 55, 19-24.
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Summary of some key points

� Sample size computations require clear ideas about objective of
study, type of data collected and statistical methods that will be
used.

� Effect size and variability of observations are also needed but
can be difficult to specify. (Pilot studies or adaptive sequential
designs can help.)

� Due to uncertainties at planning stage, power computations will
only be approximate (but nevertheless important)!

� If you cannot ensure sufficient power for your investigation, there
is no point carrying it out. (Unless you are doing an
exploratory/pilot study.)

� Good design and accurate measurement can help to improve
power!
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Free software for power-sample size computations

� G*Power 3.1.9: Windows and Mac,
http://www.gpower.hhu.de/

� PS: Power and Sample Size Calculation version 3.0.43,
2011, free for for Windows, Mac, and Linux
http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize

� R: packages pwr and samplesize – power computations for
parametric and nonparametric tests

� POWER V3.0: for logistic regression, Windows, free,
provided by NIH http://dceg.cancer.gov/tools/design/power

� Web based sample size calculator (can also be
downloaded): http://www.stat.uiowa.edu/r̃lenth/Power/

Power computations for many of the basic tests.
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Commercial software for power-sample size
computations

� PASS 13: power analysis and sample sizes for over 230
statistical tests and confidence intervals, Windows,
commercial, free trial http://www.ncss.com/software/pass/

� SPSS: SamplePower, extra package
� SAS: PSS application, PROC POWER, PROC GLMPower,
JMP

For statistics with means and differences in means, correlation,
one-way and factorial analysis of variance (ANOVA), regression
and logistical regression, survival analysis, equivalence tests
and more.
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If you are still unsure after this workshop. . .
Quoted from: Lenth (2006)

I receive quite a few questions that start with something like this: Ï’m
not much of a stats person, but I tried [details...] – am I doing it right?"
Please compare this with:
Ï don’t know much about heart surgery, but my wife is suffering from
... and I plan to operate ... can you advise me?"
Folks, just because you can plug numbers into a program doesn’t
change the fact that if you don’t know what you’re doing, you’re
almost guaranteed to get meaningless results – if not dangerously
misleading ones.

. . .

If your scientific integrity matters, and statistics is a mystery to you,
then you need expert help. Find a statistician, and talk to her
face-to-face if possible.
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