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ForceGen: End-to-end de novo protein generation 
based on nonlinear mechanical unfolding responses 
using a language diffusion model
Bo Ni1, David L. Kaplan2, Markus J. Buehler1,3*

Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins 
and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going 
beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, 
we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design 
objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model 
and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, 
we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including 
unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model 
offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological 
synthesis, using mechanical features as the target to enable the discovery of protein materials with superior 
mechanical properties.

INTRODUCTION
Proteins present an elegant yet complex and rich design platform. 
The various functions and outstanding properties of proteins can be 
attributed to the folded three-dimensional (3D) structures, encoded 
by the underlying one-dimensional (1D) primary sequences consisting 
of about 20 naturally occurring amino acids (1). Through evolution, 
nature has demonstrated great success in “designing” proteins as a 
set of critical building blocks that constitute fundamental functions 
of all life, and specifically remarkable biomaterials, ranging from the 
structural hierarchies in collagens, complex assemblies such as silk, 
to tissue assemblies such as muscle and skin (2–5). In these various 
tissues and systems, the detailed mechanical signature—often, their 
response to mechanical pulling—is an essential feature for mechano-
biology (6–9).

At the same time, there remains vast design space of mechanically 
optimized proteins yet unexplored by nature given the enormous 
possibilities of protein sequences (10). Hence, inspired by nature, dis-
covering de novo proteins may unlock potentially unprecedented 
properties and functions (3, 10–16). However, this enormous design 
space and costs associated with experimental testing present great 
challenges in finding effective tools to design de novo protein sequences 
that meet a set of interested functions or properties (14–19).

In recent years, the development of deep learning approaches and 
their applications to proteins have provided fast avenues for protein 
study and design. For forward problems focused on structure identifi-
cation, deep learning–based tools such as AlphaFold2 (20) and 
RoseTTAFold (21) represent a breakthrough in achieving competitive 
accuracy with experimental methods in predicting 3D folded struc-
tures based on protein sequences at a much reduced cost. (22) Built 

upon these approaches, other protein folding tools [e.g., Omegafold 
(23), RGN2 (24), HelixFold-single (25), and ESMFold (26)] have been 
exploring the application of large language models. By removing 
dependence on multiple sequence alignments (MSAs) as the input, 
improvements in further reducing computational costs and achieving 
better predictions for orphan and rapidly evolving proteins have 
been demonstrated (23, 24, 26, 27).

End-to-end models based on deep learning that predict various 
structural features [e.g., secondary structure type and content (28–
33), binding sites (34), and surfaces (35)] and properties [e.g., solu-
bility (16, 36, 37), melting temperature (38), natural vibrational 
frequencies (39, 40), and strength (41)] for given sequences have 
also been reported. At the sample time, the inverse design of de novo 
proteins that meet desired structural or property features presents a 
more challenging task. On one hand, facing the enormous sequence 
space, search algorithms teamed with efficient deep learning–based 
forward predictors (30, 42, 43) may still suffer from inefficient explora-
tion and the design accuracy and varieties of the discovered sequences 
are not easily controlled. On the other hand, recently emergent genera-
tive models (44–49) provide a direct map from the desired character-
istics to potential designs and are becoming an emerging paradigm 
for various materials research and design (50–55), including proteins. 
For example, using an attention-based diffusion model trained on 
secondary structure data, de novo protein sequences can be generated 
based on secondary structure design objectives (56). However, these 
generative design models often focus on structural level design [such 
as secondary structures (56) or detailed protein backbone shapes 
(57–60)]. In contrast, development of generative models aimed at 
end-to-end design from property of interest to protein sequence 
remains rare (61).

Here, we focus on nanomechanical properties (62–65) of proteins. 
Thanks to the advent of single-molecule technology (66) [e.g., atomic 
force microscopy (AFM) (67, 68), optical tweezers (69, 70), and 
magnetic tweezers (71, 72)], the measurement of protein unfolding 
under an applied mechanical force provides a unique molecular basis 
for understanding protein deformation (elasticity/plasticity) and 
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fracture (64) and can play key roles in affecting some macroscopic 
mechanical properties of protein-based materials due to the inherent 
structural hierarchy. For example, via experimental measurements 
and theoretical analysis, it has been demonstrated that toughness of 
synthetic protein hydrogels can be correlated to the mechanical un-
folding responses of the protein molecules and that mechanically 
strong folded proteins can result in tough hydrogel designs (73). 
Therefore, generating de novo proteins that meet desired mechanical 
unfolding responses can represent a key molecular level design step 
in protein-based material designs. Compared with previous protein 
design cases, this problem presents some unique challenges. First, 
this is a property-to-sequence end-to-end design task bypassing the 
structure level, which is expected to be more difficult than previous 
structure-to-sequence design tasks (56, 60). Second, the available or 
affordable data on mechanical unfolding responses of known proteins 
(74) are rare when compared to those for protein structures (75) or 
sequences (76). Besides mechanical properties, we expect that these 
two challenges are also shared by many other property-to-sequence 
design tasks in proteins.

To address this problem, here, we combine an attention-based 
(77) diffusion model (56) with a pretrained large language model 
(26) for proteins to construct a generative deep learning model that 
predicts amino acid sequences and 3D protein structures based on 
mechanical unfolding responses as design objectives. In a singular 

workflow (Fig. 1), we start with performing a large series of full-atom 
molecular dynamics (MD) to simulate the mechanical unfolding 
process of Protein Data Bank (PDB) (75) proteins and recording the 
force responses (Fig. 1A). Then, we construct a protein language dif-
fusion model (pLDM) by translating the protein sequences into a 
word probability latent space using a pretrained protein language 
model (pLM) and training a diffusion model to learn the map between 
sequence representations and the force-separation responses (Fig. 1B). 
At deployment, the trained pLDM predicts sequence candidates based 
on the given unfolding force conditions and the integrated folding 
algorithm (i.e., OmageFold) (23) determines the 3D structures of 
the resulting sequences. For validation, we compare the designed 
sequences with known proteins to analyze novelty (Fig. 1C) and test 
the designed proteins using MD to compare the mechanical properties 
and unfolding responses with input conditions. To prepare the design 
pipeline for further experimental validation, other properties key to 
experimental synthesis and testing, such as solvent accessible surface 
area (SASA) (78), solubility, or stability (36, 79), can be estimated using 
available predicting tools (36, 78, 79) to further screen for preferred 
protein candidates (Fig. 1D). Through well-controlled comparisons, 
we demonstrate that our pLDM outperforms the vanilla diffusion 
model with or without an iterative design scheme. Built upon the 
property-to-sequence generation capability of our model and the 
broad potential of protein materials in achieving superior mechanical 

Fig. 1. Workflow of developing the end-to-end protein generation model. (A) Curating a PDB protein dataset on their mechanical properties by unfolding protein 
chains by force in MD simulations. (B) Overview of the conditioned protein language diffusion model (pLDM) developed here. (C) Analyzing the novelty of the generated 
protein sequences via protein-protein BLAST tests. (D) Validating the mechanical properties of the designed protein candidates using folding tools and mechanical un-
folding tests and predicting other properties (e.g., solubility or stability) for further screening of the desired protein candidates.
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properties, as well as other interesting properties (80–83) [e.g., optical 
(82, 83), electronic (80), energy storage (81), etc.], we expect that 
our end-to-end design model can be useful in numerous biological 
and engineering applications for the property-targeted generative 
design of various protein material systems.

RESULTS
Full-atom modeling of unfolding proteins by force
Inspired by single-molecule force spectroscopy (67), we simulate 
the unfolding process of protein chains under mechanical force to 
understand their mechanical properties at the molecular level. As 
shown in Fig. 2A, we start with PDB proteins with experimentally 
measured 3D structures. Using full-atom MD with the CHARMM 
force field (84) and a generalized Born implicit solvent model (85), 
we first relax the protein molecule at body temperature (i.e., 310 K) 
to reach equilibrium conformation. Then, we stretch the protein 
chain of N amino acids along the direction connecting the two chain 
ends (i.e., a and b) by fixing one end and steering the other with a 
spring (i.e., the segment between b and c in Fig. 2A) of a force con-
stant k = 0.5 kcal/(mol Å2) at a constant velocity v = 0.1 Å/ps. The 
pulling force, Fp, is recorded every 0.2 ps until the distance between 
two pulling ends, Lac, reaches the contour length, Lcon, of the protein 

chain, where we assume the average length of each amino acid is 3.6 Å 
(86) and Lcon = N × 3.6 Å. Further details on the MD simulations 
can be found in Materials and Methods. Movies of the unfolding 
trajectory of some selected PDB protein examples can be found in 
the Supplementary Materials.

In Fig. 2B, we smooth the raw force response (the red curve) to 
get rid of high-frequency fluctuations and get the unfolding response, 
Fp(Lac), of the protein chain (the blue curve), from which we can 
identify the toughness and strength of the protein molecule using 
the unfolding energy T and the maximal value of force Fmax defined 
as the following.

To curate a dataset based on naturally existing proteins, we use 
the Biomolecule Stretching Database (BSDB) (74) as guidance and 
select 7026 PDB proteins that have no gaps in their experimentally 
determined structures and consist of no more than 128 amino acids. 

T = ∫
Lcon

FpdLac (1)

Fmax = max
Lac ≤Lcon

{Fp} (2)

Fig. 2. Mechanical unfolding of proteins and mechanical properties dataset curation. (A) Full-atom simulation of mechanically unfolding a PDB protein chain using 
steered MD. (B) Collecting (red data) and smoothing (blue data) the pulling force history during the whole unfolding process and converting it into a vector representation 
(green triangle dots). (C) Collecting pulling force curves during mechanically unfolding for a large member of PDB proteins. (D) The distributions of the unfolding energy 
(left) and maximal pulling force (right) for the PDB protein training set developed here.
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Then, we collect their structures directly from the PDB (75) and ap-
ply the protocol above to test their mechanical unfolding responses. 
An overview of the distributions of the unfolding responses and me-
chanical properties are shown in Fig. 2 (C and D). Specifically, in 
Fig. 2D, the unfolding energy or toughness shows a bimodal distri-
bution while the strength presents a unimodal one; in Fig. 2C, one 
can observe that there exist various unfolding responses among pro-
teins. For example, the maximal force may appear as the peak in the 
middle of unfolding process or near the end when reaching the con-
tour length, which may indicate very different deformation mecha-
nisms. An in-depth study of these mechanical properties and their 
dependence on the structural features and sequences for a large 
number of proteins is of great research interest and should be car-
ried out in the near future. Further insight can also be obtained from 
numerous experimental studies using AFM-based force generative 
outcomes during unfolding states of proteins. Here, we focus on ap-
plying these freshly collected data to develop protein generation 
models. To efficiently label the pulling force responses during the 
full unfolding process, we introduce a pulling force vector �⃑Fp (green 
triangles in Fig. 2B) to represent the full response as the following

where N is the sequence length of the protein chain and we sample 
the pulling force when the distance between the pulling ends reaches 
Li
ac
= i × Lcon ∕N . For Li

ac
 that is smaller than the value of the initial 

equilibrium conformation, we simply define the force values as zeros. 
Such a vector representation can adjust to the protein sequence 
length automatically; that is, longer/shorter proteins with potentially 
more/fewer unfolding details have more/fewer sampling points evenly 
distributed. Next, we develop DL models to generate protein sequences 
that meet the given mechanically unfolding responses represented 
in terms of the pulling force vector �⃑Fp.

pLDM and inverse design for mechanical signatures
To solve the conditioned protein design task, here we develop a 
pLDM by combining a pretrained pLM (26) and an attention-based 
diffusion model (56). Figure 3A depicts an overview of the model 
developed in the present work. The pLM (on the right of Fig. 3A) is 
pretrained on large amounts of protein sequences data (76) to form 

�⃑Fp = {Fp(L
i
ac
): i = 0, 1, 2, … ,N} (3)

Fig. 3. Overview of the pLDM. (A) Structure of the developed model, pLDM. It combines a protein language model (pLM) pretrained on large protein sequence data and 
a trainable attention-based diffusion model. We use the pretrained pLM to translate protein sequence representations between the tokenized sequence space and the 
word probability latent space. The diffusion model, with a building block of a 1D U-net, is trained to predict the noise added at each diffusion steps, thus gradually removing 
them to generate meaningful sequence representations at deployment. (B) Depiction of the 1D U-net architecture that translates an input Ii into an output Oi under a 
condition set Ci. The model features 1D convolutional layers, as well as self-/cross-attention layers as shown on the right.
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internal representations that better understand not only sequences 
but also structures and properties of proteins (33). We leverage this 
knowledge by applying pLMs to translate protein sequences from 
the tokenized sequence space into the word probability latent space. 
Then, we train a diffusion model developed in the previous work to 
operate in this probability latent space. The diffusion model is built 
upon a 1D U-Net architecture with attention mechanisms (Fig. 3B). 
At deployment, starting with the given condition (on the left of 
Fig. 3A) and random signal seed, the diffusion model predicts and 
removes the noise at each step and produces meaningful sequence 
probability tensors, which are then translated back into protein 
sequence using the fixed pLM. There are multiple choices for the 
pretrained pLM and larger pLMs require higher computing resource 
and cost (26, 33, 87). For computational efficiency, in the following, 
we focus on the results that adopt a medium-sized pretrained model 
with 150 million parameters from the ESM-2 series (we find that 
this yields improved performances as is shown in the discussion in 
the next subsection) (88).

Once the model has been trained, we demonstrate the performance 
of the developed pLDM by testing it with various mechanical un-
folding responses, including those that come from naturally existing 
proteins and those that are de novo. The generated sequences are 
folded into 3D structures using OmegaFold (23) and then undergo 
the same mechanical unfolding tests using full-atom MD simulations. 
With protein BLAST (89) test and comparing pulling force responses 
with the input, we examine the novelty of the generated sequences 
and the accuracy of the protein design.

For protein design with the mechanical unfolding responses that 
correspond to naturally existing proteins, we test the model with the 
pulling force records of PDB proteins in the test set, with which the 
model has not been trained. Figure  4 shows some examples of 
the designed proteins and their mechanical unfolding responses. In 
terms of the design target, the conditioned pulling force paths (red 
curves) in Fig. 4 (A to F) represent a variety of different patterns, 
including simple ones that show that the pulling force nearly keeps 
increasing during the unfolding process (Fig. 4D), the examples that 

Fig. 4. Results for protein generation based on mechanical unfolding responses of naturally existing proteins. (A) to (F) show a variety of representative cases of 
different unfolding force paths (red curves), including the one that nearly keeps increasing (D), the ones that show local peaks during an overall increasing trend (A, B, and 
F), the one that meets an oscillating plateau and then increases (E), and the one that reaches a high peak in the early stage (C). The proteins generated by our model 
demonstrate pulling force patterns (blue curves) that follow the trend of design objectives. Because of the complex and highly oscillating nature of pulling force response 
during mechanical unfolding of proteins, we use R2 value and relative L2 error (listed in each panel) to measure the accuracy of the design in following the overall trend 
and quantitative values. Corresponding to the various pulling force responses, the generated proteins show a variety of structures, including high α helix content (A, B, 
and F), a mix of β sheets and random coils (C), a mix of an α helix segment and random coils (D) and a mix of β sheets and α helices (E).
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show local peaks in early stages of unfolding during an overall in-
creasing trend of the pulling force (Fig. 4, A, B, and F), the ones that 
reach an oscillating plateau and then increase (Fig. 4E), and those 
that achieve high peak in the initial stage of unfolding (Fig. 4C). 
Despite this complexity of protein unfolding scenarios, and the 
oscillating nature of pulling force, the proteins generated by our 
model demonstrate pulling force responses (blue curves) that in 
general closely follow the design objectives. We use multiple metrics, 
including R2 and relative L2 error (see Materials and Methods for 
details), to measure the accuracy of design in meeting the overall 
trend as well as quantitative values of the mechanical responses. 
Corresponding to the various patterns of pulling force responses, 
the generated proteins also show a variety of internal structures. For 
example, a relatively simple combination of an α helix segment and 
random coils without complex entanglement or close spatial packing 
in Fig. 4D produces an unfolding process with consistently increasing 
pulling forces with few oscillations. An entangled mix of α helices 
and β sheets in Fig. 4E yields an unfolding pulling force path with a 
plateau region of strong oscillations. Unfolding of the β sheets in 
Fig. 4C can be related to the high local peak in pulling force history. 
In Fig.  4 (A, B, and F), α helix segments of different lengths and 

spatial arrangements can produce similar trends but different quanti-
tative pulling force records. More details on the mechanical unfolding 
process of some of these cases, including cases A, C and E, can be 
found in the MD trajectory movies in the Supplementary Materials.

On the novelty of these generated proteins, we apply basic local 
alignment search tool (BLAST) analysis (89) to the predicted amino 
acid sequences to access whether, and to what extent, they represent 
de novo sequences or closely related forms of known proteins. Table 1 
shows the results of the BLAST analysis for the various cases listed 
in Fig. 4. We find that even though the input design targets are from 
existing PDB proteins, many of the generated protein sequences 
(cases shown in Fig. 4, A to D and F) do not match any sequences in 
the database of known proteins with standard BLSAT analysis (i.e., 
returning “no significant similarity found” in protein BLAST test) and 
are de novo ones. The model can also produce sequences (e.g., case 
E in Fig. 4) that show some similarity to the existing proteins. However, 
the most similar example found (i.e., 8CH0) is not included in the 
training and testing set. While the model is only trained on a very 
small portion of PDB proteins, with the pulling force corresponding 
to existing PDB proteins as an input, we expect the possibility of the 
model “rediscovering” sequences that show some similarities to the 

Table 1. Results of the BLAST analysis and predicted solubility for the various generated proteins (from Fig. 4) based on existing mechanical unfolding 
responses. Given the pulling force vectors of existing proteins as the design condition, the model still shows high probability in predicting sequences that show 
little similarity to existing proteins as can be seen from the BLAST results (A to D and F). For other cases, sequences with some similarity to known proteins can 
be predicted (E). The predicted solubility is scaled with the experimental dataset with a population average of 0.45. The listed solubility values are all larger than 
0.45, thus predicting to have a higher solubility than the average soluble E. coli proteins in the experimental dataset (90).

Case Sequence BLAST result: the sequence producing the most signifi-
cant alignment

Predicted solubility

Among PDB proteins Beyond PDB proteins

A MLIEGTQELIHQKLAKGKT-
VLVQRYVAKGLQVDDNTEDL-

LANAKNYLNPDQIERSIAYAQK-
IEEMEGDDMFKVALV

– No significant similarity 
found (NSSF)

0.939

B MKKKVRMEQNEQKKQVY-
QELNDKVENDEALAPKS-

VALYIAALKEKEEAGKIPHHF-
NLLERLKLTITSCRFFLLKIQN-
NDTKLQKRRKFIDETIQLAREI-

YEKQDNK

– NSSF 0.876

C MGKITPVVLAGGKQK-
EDEETLDGGEILTKDG-
KTLKLISDAQVAVMN-

VKQVQEGTYEGSQVIEEDG-
VRGNYVSYVGK

– NSSF 1.000

D GSSGSSGRDVTQQTNKCCR-
RCSRKPHCCIKAWRPRSSD-

LYYHEKHTHSGPSSG

– NSSF 0.676

E MNTPEHMTAVVQRYVAAL-
NGGDLDGIVALFADDATVED-
PVGFQNVSGKAADANFYESP-
GFLDLVKALTGPVRAFGNEK-
FFAMIVFFEYEGTKTVVAGI-
DHIRFNGAGKVVSMRAYF-

DEKNIHASA

100% query cover, 73.6% 
identical with 8CH0

– 0.774

F MPWHHHGSSGLVQTG-
MAATGLKDFIVEAYPKKPD-
DIIKVCRSEPSAGYWWCED-

VQNEVKQKCLSKKQRQVKAQ

– NSSF 0.606
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known proteins. Further measures may be utilized to boost the novelty 
of design for such cases, including multi-shot design and selecting 
the best one based on BLAST results. In current work, we focus on 
understanding the performance of the current model.

Besides examining individual cases, we also show the distributions 
of design accuracy and novelty for a larger number of testing cases. 
Figure 5 demonstrates the results of 187 generated proteins based on 
various pulling force conditions from the standalone test set. On the 
mechanical unfolding responses, the R2 and relative L2 error between 
the measured pulling force vectors of the generated proteins and the 
input conditions among cases show unimodal distributions with 
median values of 0.56 and 0.36 (Fig. 5, A and B), respectively. The 
distributions indicate that for many of the cases, the designed proteins 
follow the input conditions in terms of the trend and value reasonably 
well during the whole mechanical unfolding process. However, as 
demonstrated in individual cases (Fig. 4), it remains challenging for 
designed proteins to precisely follow the input pulling force values at 
each unfolding step. This can also be seen by comparing components 
of pulling forces of all cases together in Fig. 5C. While conditioned 
input values of pulling force components and the measured ones 
based on the generated proteins in general share the same trend 
(that is, the distribution centers at the y = x dashed line as the visual 
guide in Fig. 5C), the finite width of the distribution cloud deviating 

away from the ideal case indicates that for individual components, 
there could be considerable mismatches.

The limited component-wise accuracy demonstrates the difficulty 
and challenge of designing proteins based on detailed mechanical 
unfolding responses, even with the current model. At the same time, 
the proteins generated by our model still show reasonable agreement 
between the achieved and the conditioned mechanical properties, in-
cluding toughness (Fig. 5D) and strength (Fig. 5E). Strength defined 
as the maximum of the pulling force shows an R2 value of 0.41 
(Fig. 5E), slightly smaller than that of the pulling force components 
(0.54 as listed in Fig.  5C). At the same time, an R2 value of 0.93, 
much higher than that of pulling force components (Fig. 5C), was 
observed for toughness (Fig. 5D), which is defined as the unfolding 
energy over the whole unfolding process (Eq. 1). This difference in 
R2 values indicates that when the entire unfolding process is considered, 
the component-wise error tends to cancel each other and the de-
signed proteins follow the input conditions in terms of toughness 
more sensitively. On the novelty of the designed proteins, Fig. 5F 
shows a bimodal distribution of the highest percent identity found 
via protein BLAST analysis for all the generated sequences. The 
highest peak (on the left in Fig. 5F) corresponds to the cases where 
the generated proteins have little similarity to the existing/known 
ones and are totally de novo. There also exists the other weaker peak 

Fig. 5. Overall quality of generating proteins based on mechanical unfolding responses that correspond to naturally existing proteins in the test set. We test the 
model with mechanical unfolding responses from 187 proteins in the standalone test set. On the pulling force response, (A) and (B) show the distributions of R2 (A) and 
relative L2 error (B) for comparing the pulling force response of each designed protein with the input condition while (C) shows the comparison in terms of pulling force 
components for all testing cases. On the overall mechanical properties, (D) and (E) compare the designed proteins with input conditions in terms of unfolding energy (i.e., 
toughness) and maximal pulling force (i.e., strength). On the novelty of the designed sequences, (F) shows the distribution of the highest percent identity found via BLAST 
test.
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on the right for cases in which the generated proteins are similar to 
the known ones. The bimodal distribution echoes the result of indi-
vidual cases listed in Table 1, and the relative height of the two peaks 
indicates that our model has a stronger tendency in generating de 
novo sequence designs.

To further boost the novelty of designed sequences, different mea-
sures could be taken, including how the model is applied and how 
the input conditions are constructed. Here, we discuss one possibility 
of using de novo mechanical unfolding responses, i.e., pulling force 
vectors that do not correspond to existing proteins, as the input. 
There is still a lack of complete rules on how to identify or construct 
physically achievable pulling force vectors for all possible amino acid 
sequences. To explore the de novo mechanical unfolding responses, 
here we start with existing pulling force vectors and mute them using 
a mixing scheme. As shown in Fig. 6A, two pulling force vectors from 
PDB proteins 2AAN and 1KN7 were chosen and show different 
patterns during the unfolding process, one undergoing an oscillating 
plateau in the early stages while the other continues to increase. 
These differences in pulling force can be attributed to the different 
internal protein structures and sequence length. 2AAN shows a 
high β sheet content in a closely packed conformation. In compari-
son, 1KN7 has a mix of α helix segments and unstructured coils 
with a more open spatial arrangement. We mix the pulling force 
vectors of each of the proteins with respect to the same normalized 
pulling end gap at different ratios (i.e., 1/3 to 2/3 for mix 1 and 2/3 
to 1/3 for mix 2) and then use these as the de novo mechanical un-
folding response to generate proteins with our model. In addition, 
in our model, the length of the generated sequence (i.e., N) can be 
controlled through the length of the input pulling force vector (i.e., 
N  +  1). Here, we intentionally choose N  =  99, which is different 
from that of both base proteins when constructing the de novo input 
pulling force vectors. The results of the proteins designed with these 
de novo pulling force vectors are shown in Fig. 6 (B and C). Similar 

to previous designs listed in Fig.  4, the mechanical unfolding re-
sponses of the designs follow the input conditions, even though this 
time they come from a mix of proteins of different structures and 
mechanical properties. Moreover, the designed proteins adopt inter-
nal structures of a mix of α helices with different compactness, 
which show little similarity to those of the base proteins. Another 
set of examples is shown in Fig. 6 (D to F) with base proteins of dif-
ferent internal structures. Again, the designed proteins fulfill the 
targeted de novo mechanical unfolding responses reasonably well.

Comparing the structures of the generated proteins including 
the ones in Fig. 6, one can raise intriguing questions about the un-
derlying relation between protein structure and mechanical properties. 
For example, as seen in in Fig. 6, none of the generated proteins have 
β sheets even though some of the base proteins do. Instead, many of 
the designed proteins are composed of α helices and β turns and 
packed in a distinct conformation. As the unfolding force response 
may be related to individual secondary structures unfolding, as well 
as the interactions between secondary structures, one may examine 
whether the model has learned to search for certain topological features, 
like different compactness, to generate the desired force-separation 
patterns. To investigate this possibility, we calculate the SASA using 
dr-sasa (78) based on the relaxed protein structure. This helps us to 
assess the compactness of the folded structures for both generated 
and base proteins. The SASA and their values normalized with 
respective to the sequence length are listed in table S1. Among the 
base proteins in the mixing pair (Fig. 6, A and D), the one with a 
higher unfolding force level (base protein 1 in Fig. 6A or base pro-
tein 3 in Fig. 6D) includes closely packed β sheet structures with a 
normalized SASA smaller than that with a lower unfolding force 
(base protein 2 in Fig. 6A or base protein 4 in Fig. 6D), and with 
loosely packed internal structures. Among the mixtures (Fig. 6, B 
and C, or Fig.  6, E and F), similar trends are observed: A higher 
unfolding force level indicates a relatively smaller SASA and more 

Fig. 6. Results for protein generation based on de novo mechanical unfolding responses. For de novo design input, in (A) and (D), we construct mechanical unfolding 
responses by mixing existing ones at a different ratio and changing the targeted sequence length. Here, we intentionally choose pulling forces of different patterns, one 
that monotonically increases (base 2 in A and base 4 in D) and the other that first reaches a plateau then increases (base 1 in A and base 3 in D) as the bases to mix. By 
choosing the mixing ratio, the de novo inputs cover a transition between these two pulling force patterns. (B), (C), (E), and (F) show the results of the generated proteins. 
On the pulling force, the generated proteins follow the design input closely in terms of both the overall pattern and quantitative values throughout the unfolding process. 
On the structure, interestingly, the generated proteins show a mix of α helix and random coil segments, which is different from some of the base proteins of high β sheet 
content. On the sequence length, the generated proteins have a length that is different from both base proteins.
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closely packed internal structures (Fig. 6, B or E). However, between 
the mixes and the base pairs of proteins, no clear relation in terms of 
SASA or normalized SASA can be identified. The mix can have a 
normalized SASA falling in between the base proteins or can be larger 
than both bases. Therefore, systematic generation of more examples 
and in-depth study of the patterns and relationship of their structural 
and mechanical properties would likely be required to gain additional 
understanding of protein sequence-structure-property relationship 
as well as the learned tendency of our model, which can be done in 
future work, along with additional experimental validation.

With the obtained de novo pulling force responses as the input, it 
is interesting to investigate the novelty of the generated proteins. As 
shown in Table 2, all of the designs have no significant similarity among 
known protein sequences according to protein BLAST analysis. The 
case study shown here demonstrates that our generative model can 
also be used as an effective tool to explore the unknown possibilities 
in property space of mechanical unfolding responses by constructing 
de novo input conditions. In return, it is more probable to discover 
de novo designs of proteins.

Besides using the mixing scheme demonstrated above, other ways 
can be used to create or discover de novo mechanical unfolding 
responses as the design input. One possibility is to train a generative 
model (e.g., a diffusion model) on the pulling force data curated here. 
At deployment, mechanical unfolding responses can be generated 
with or without input conditions. Because the possible pulling force 

vectors should in principle be determined by the sequence-structure-
property relationship of proteins, in-depth investigation on this pro-
cess deserves a separate study, where the generation model developed 
here can serve as an effective tool in navigating the complex design 
space for proteins.

To prepare the protein design pipeline for further experimental 
testing, we can also integrate available predicting tools (36, 78, 79) to 
estimate properties of generated proteins that are key to experimental 
synthesis, manipulation, and test. For example, by applying the solu-
bility predictor based on protein sequences, we can screen generated 
proteins for desired solubility. As listed in the last column of Tables 1 
and 2, surprisingly, we find many of the generated proteins are predicted 
to have a solubility higher (i.e., larger than 0.45) than the average 
soluble Escherichia coli protein from the experimental solubility data-
set (90), which indicates encouraging potential for successful experi-
mental synthesis, use, and manipulation.

Benefits of using pLDM in small-data generation tasks
Combining the above results of protein designs based on existing or 
de novo mechanical unfolding responses, we have demonstrated that 
the pLDM developed here can achieve reasonably good design 
accuracy for both detailed unfolding pulling force history and overall 
mechanical properties. At the same time, many of the generated se-
quences are totally de novo, having no significant similarity among 
any existing or known proteins. This is surprising considering the 

Table 2. Results of the BLAST analysis and predicted solubility for the various generated proteins (from Fig. 6) based on de novo mechanical unfolding 
responses. Given the de novo pulling force vectors as the design condition, the model shows high probability in predicting de novo sequences that show little 
similarity to existing proteins as can be seen from the BLAST results (for Mix 1 to 4). The predicted solubility is scaled with the experimental dataset with a 
population average of 0.45. The listed solubility values are all larger than 0.45, thus predicting to have a higher solubility than the average soluble E. coli proteins 
in the experimental dataset (90).

Case Sequence BLAST result: the sequence producing the most signifi-
cant alignment

Predicted solubility

Among PDB proteins Beyond PDB proteins

For mix 1 MDDALLLKAMQQLLLA-
PIRVKEDDPLVRRDAAIG-
FAPDGVRVDFEYTAKVD-

LAKATLDEVGLKGANTTQP-
PRPIANKLPPPIVVLASKLLEI-

YKELKQL

– No significant similarity 
found (NSSF)

0.742

For mix 2 GSSGSSGYGRQVTTR-
SPRETTSLSFDIDREPMEFN-
QLKAQELMMPFNLKALDT-

GRFNRPLQFVEQAKGK-
MEKALLKKATDPVQALPK-

KDLSEGISPKMG

– NSSF 0.814

For mix 3 MMDTPKLMDELKDYAPQPAR-
RALNLTNPRTAAVPEKTG-

DDVAPFFDHAAEKENLGF-
HHEVANDNWESEAKFLK-
LTKVPVSPQVIYNAAGLL-

FEAARKTP

– NSSF 0.761

For mix 4 GSSGSSGPSTYKNPG-
DRFFTTSYFTDPELEAGQFE-
VRTKDKMLNGITLLQQKP-

CGKSCELFVDQNKKAVEEK-
KKKLMLTQMAAYYQQDDLT-

MASGPSSG

– NSSF 0.657
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fact that (i) the design task is challenging, and (ii) the training data 
used are relatively small compared with previous work (56). Specifi-
cally, the design task here is to map detailed pulling force responses 
directly to protein sequences, bypassing predicting the 3D struc-
tural transition of protein chains during the unfolding process. On 
the basis of MD simulations and experimental studies, it is clear that 
the unfolding process of protein structures under mechanical forces 
corresponds to complex uncoiling of the backbone and breaking of 
hydrogen bonds within the 3D hierarchical structures of proteins. 
Theoretically, we can expect that this design task could be more 
challenging than designing protein sequences based on structural 
conditions (e.g., secondary structure types). At the same time, for 
the pLDM discussed above, which designs sequences with a length, 
N, smaller than or equal to 126, it was trained with a dataset of 6863 
proteins, mainly limited by the high computational cost to curate 
the data on mechanical properties. The size of the dataset is small 
compared with the PDB proteins of known structures (i.e., about 
13,644 for single-chain protein with N ≤ 126), and even further 
dwarfed by the number of all possible protein sequences (i.e., more 
than 20126).

Given such a challenging protein design problem with a limited 
small set of labeled data, we discuss the strength of the current 
pLDM by comparing it with the protein diffusion models (pDMs) 
developed previously (56). The structure of the adjusted pDM is 
summarized in fig. S1A. The main difference between pLDM (Fig. 2B) 
and pDM is about the space where the diffusion/denoising processes 
occur during the training/inferring. While the pDM operates in the 
tokenized protein sequence space, pLDM performs in the word 
probability latent space formed by pretraining the pLM on the available 
protein sequence dataset (i.e., UniRef50 dataset for ESM-2 pLM 
adopted here), which is much larger than the datasets on protein 
structures or mechanical properties. For various downstream pre-
diction tasks, the adoption of the pretrained pLM as a base model 
has proven to be beneficial (33). For example, the ESM-2 model adopted 

here has been used for protein folding prediction in ESMFold (26, 
87) and achieved comparable accuracy with the folding tool using 
MSA as the input (e.g., AlphaFold2) but at a lower computational 
cost. At the same time, for inverse generation, the integration of a 
large language model and diffusion model has proven to be beneficial 
in conditioned generation tasks for images (48, 91) and texts (92, 93) 
[e.g., Diffusion-LM can achieve fine-grained controls on syntactic 
structure for text generation (93)]. However, the applications of pre-
trained pLM in the generative tasks of protein design remain rare 
(94) and the potential benefits are to be explored. Here, the mechanical 
unfolding response of the conditioned protein design task and our 
results provide a concrete example to study this aspect of the process.

To compare with pLDM, two alternative models (AMs) based on 
pDMs were constructed. The first one, AM1, uses one pDM and de-
signs the protein sequence for a given pulling force vector in one 
shot, similar to the pLDM developed above. The second AM, AM2, 
consists of two pDMs as the protein designer and protein predictor 
separately. The designer is the same as the first pDM model, AM1, 
while the predictor is trained to predict pulling force vectors based 
on the given protein sequences. At deployment, the protein designer 
iteratively generates sequence candidates and the protein predictor 
then evaluates them to pick the most accurate one among five attempts, 
forming an on-the-fly iterative design scheme (fig. S1B). Both models 
are trained on the same dataset discussed earlier and tested with the 
same generation task based on existing mechanical unfolding re-
sponses from the test set. A summary of the performance of the two 
pDM-based models together with those of the pLDM is listed in 
Table 3. We use various metrics, R2 and relative errors, to evaluate 
the design accuracy of the models on the whole test set, considering 
not only the overall mechanical properties (i.e., toughness and 
strength) but also the detailed mechanical unfolding responses in 
terms of the pulling force vectors. For most of the comparisons (9 
out the 11 rows), pLDM achieves the best performance (e.g., the 
highest R2 or the lowest error). This result demonstrates that, by 

Table 3. Performance comparison between the current pLDM with one-shot prediction (last column) and the protein diffusion model with one-shot 
prediction (third to the last column) as well as iterative predictions (second to the last column). Tested with the existing unfolding responses from the test 
set, the pLDM shows an overall better performance in fulfilling the design target by achieving the best results (indicated with the underline, the minimum for 
errors and the maximum for R2) in most rows considering mechanical properties as well as the detailed pulling force responses.

Performance on the test set AM1: pDM with 
one-shot gener-

ation

AM2: iterative 
prediction with 

pDM-based pro-
tein designer and 

predictor

The current model: 
pLDM with one-
shot prediction

Toughness (i.e., unfolding energy) R2 0.86 0.87 0.93

Relative L1 error
Mean 0.151 0.150 0.147

Median 0.121 0.123 0.102

Strength (i.e., Fmax) R2 0.09 0.17 0.41

Relative L1 error
Mean 0.188 0.164 0.188

Median 0.151 0.113 0.149

Pulling force vectors As vectors
R2 Mean 0.427 0.418 0.452

Median 0.526 0.522 0.563

Relative L2 error
Mean 0.399 0.402 0.398

Median 0.377 0.382 0.362

As components R2 0.476 0.499 0.537
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integrating the pretrained pLM, pLDM achieves enhancement in 
producing more accurate designs even when being trained only on 
a relatively small dataset. This advantage of pLDM with respect to 
pDM can be helpful for other property-to-sequence design tasks for 
proteins, given that usually data on protein mechanical or other 
properties are more limited or costly to collect.

DISCUSSION
Generating de novo proteins based on their mechanical unfolding 
responses presents unique challenges in property-targeted protein 
design. For rational design strategies, it is hard to grasp the complex 
relationships between sequences, structures, and properties. For 
data-driven methods, the labeled data on the mechanical properties 
are often costly to collect and limited in number, especially given the 
enormous possibilities in protein sequence space.

Here, we have developed a pLDM as an effective tool to tackle these 
challenges and generate de novo proteins that meet the mechanical 
properties’ design objectives in an end-to-end manner. The pLDM 
developed combines the pretrained pLM and diffusion model as key 
components and leverages the strength of both. The pLM part is pre-
trained on the abundant protein sequence data and thus provides an 
effective representation of protein sequences in its latent space. The 
diffusion model part only operates in this latent space and learns the 
map between detailed pulling force responses and the sequence rep-
resentation using only a relatively small set of data curated by per-
forming full-atom simulations. By examining the unfolding details 
of individual designs and the statistics of the mechanical properties 
of many cases, we demonstrate that the proteins designed by our 
model meet the targeted overall mechanical properties, including 
toughness and strength, as well as the detailed unfolding force vectors 
with reasonably good accuracy. Moreover, the sequences generated 
are mostly de novo, sharing very limited similarity with existing/
known proteins. Given the mechanical unfolding responses from 
known PDB proteins as the design input, our model still shows a 
strong tendency in discovering de novo proteins as alternatives. 
Constructing de novo unfolding responses as the input via a mixing 
scheme further boosts the probability of generating de novo designs. 
Finally, through controlled comparisons, we show that the pLDM 
outperforms the vanilla pDM with or without an iterative design 
scheme in achieving better design accuracy, thus clearly demonstrat-
ing the benefits of combining pretrained pLM and diffusion model 

in the pLDM developed here. A short summary of these key aspects 
about the pLDM is listed in Table 4.

As the initial steps of developing property-to-sequence generative 
models for de novo protein design, here we adopt the force-separation 
curves collected from MD simulations, in the hope of achieving 
consistency and relevance, avoiding bias from simplified models, 
and curating sufficient data points for DL model training. A few 
clarifications on the mechanical unfolding response data are included 
in the following.

First, there exist differences as well as commonalities between 
MD results and experimental measurements of the force-separation 
curves of protein unfolding that deserve more nuanced discussion. 
The mechanical unfolding process of proteins often involves entropic 
elasticity, a transition to energetic elasticity, and bond breaking (95). 
Thus, the force response often shows strong rate dependence. Limited 
by computational power, the MD simulations are performed at a 
pulling speed several orders faster than that in the experimental 
tests. Therefore, the corresponding unfolding mechanisms (e.g., 
sequential or simultaneous rupture of several hydrogen bonds) can 
be different (96), and a direct comparison of the force records is often 
challenging. It should be pointed out that our current model, trained 
with all-atom MD data, is not intended for designing proteins that 
directly meet the given pulling force response at a different pulling 
speed. Instead, we use the MD data under the fixed pulling speed as 
a consistent representation of mechanical properties of protein. 
While the absolute values of strength and toughness measured by 
MD may change with the pulling speed, the relative rank of the 
mechanical properties of the proteins often remain robust. At the 
same time, there do exist methods and procedures to bridge MD 
and experimental results (97, 98). For example, built upon the 
steered MD trajectory calculated here, further MD simulations can 
be performed to calculate the mean force potential during unfolding 
using statistical sampling methods. Unfolding force distribution in 
experimentally relevant regimes can be predicted based on the 
mean force potential via transition-state theory and Monte Carlo 
simulations (97). Therefore, the design goal of our current model can 
be connected to the response under experimental relevant pulling 
speed and force level with extra calculations and sampling efforts.

Second, our MD data include fundamental atomistic details and 
avoid bias from bottom-up coarse-grained (CG) or theoretical models 
with specific assumptions. By tracking atomic motions during 
unfolding, the MD results require little predefined assumptions like 

Table 4. A short summary of the performance of protein language diffusion model developed in the present work and other models discussed. 

Model name Tested input conditions Design accuracy Design novelty

The developed model: protein 
language diffusion model using 
one-shot design

Mechanical unfolding responses 
from naturally existing proteins

Good agreement with the designed 
pulling force responses as well as 

the strength and toughness in trend 
and values

Tend to generate de novo ones, but 
can also rediscover ones that show 
some similarity to existing proteins

De novo mechanical unfolding 
responses

Similar to the above More probable to discover de novo 
sequences

AM1: Protein diffusion model using 
one-shot design

Mechanical unfolding responses 
from existing proteins

Slightly weaker than AM2 –

AM2: Protein diffusion model using 
multi-shot iterative design

Mechanical unfolding responses 
from existing proteins

Weaker than the developed model –
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those in CG models (99) or theoretical worm-like chain (WLC) 
models (100). At the same time, the information collected from the 
full-atom MD simulation can be used to fit parameters in CG and 
WLC models. The diffusion model was directly trained on these 
force patterns and learned to pick relevant features via the attention 
mechanisms embedded, avoiding any human intervention or pre-
knowledge on the subject.

Third, similar models can be developed when sufficient data on 
mechanical unfolding force under other testing protocols become 
available. As an initial step to prove this framework, our current 
model is trained and validated with the freshly curated MD data and 
the consistent MD test protocol. At the same time, similar models 
can be straightforwardly trained with other sufficient databases. In 
particular, when a large number of force-separation curves measured 
from a standard experimental protocol become available, models 
with similar architectures can be developed via direct training or 
transfer learning with them. With such models, consistent validation 
will require synthesis and test of the designed proteins in the wet lab. 
This requires well-planned in-depth design for specific goals while 
the current work is focused on model development and has provided 
self-consistent validation. We will save the experimental studies for 
future study.

Finally, the specific choice of pulling force direction in our MD 
protocol is clarified here. It has been demonstrated that the me-
chanical unfolding responses of proteins can be affected by the 
detailed folding geometry and unfolding pathway (101). To effectively 
record the force history that corresponds to the deformation and 
uncoiling events of protein internal structures, we designed the test 
protocol to apply the mechanical force along the direction that connects 
the two ends of a protein chain after relaxation. When the mechanical 
pull is applied in another direction, the monomer is likely to first 
undergo a rotational motion to align along with the current pull 
direction before meaningful unfolding events happen given that in 
a quasi-static loading process rotation usually requires a smaller 
load than unfolding events like breaking hydrogen bonds. Once the 
protein monomer aligns along with the pulling direction, for the 
unfolding process that follows, we expect that a force record pattern 
similar to ours could be collected and our protocol and results remain 
relevant and robust. At the same time, some extreme cases could exist. 
For protein monomers mainly with weak internal folding structures 
(e.g., unstructured random coils), the load to rotate the monomer can 
be comparable to or larger than that of deformation and unfolding. 
We expect the detailed force pattern could be affected more strongly 
by the choice of pull direction in those cases.

The freshly curated MD dataset and the pLDM developed here 
offer a unique and powerful means to investigate the underlying 
sequence-structure-property relationship and explore the enormous 
protein sequence spaces with molecular mechanical properties as 
guidance, to meet specific mechanobiology properties. With the 
available dataset, one can conduct a detailed survey on the internal 
structural features (e.g., secondary structures) of the proteins and 
their correlation with the unfolding force pattern to see whether there 
is any uneven distribution centered on certain secondary structure 
patterns (e.g., α helix and β sheet) among PDB proteins and our training 
set for certain unfolding force patterns. Applying our model, future 
studies can start with a systematic study on the relationships between 
sequence-structure-mechanical properties in proteins.

For example, as demonstrated in Fig. 6, one can construct de novo 
mechanical unfolding responses by mixing those existing PDB proteins 

at different ratios and our model can generate protein candidates 
that meet those mechanical unfolding responses. With such generating 
capability, one can systematically classify the patterns of various 
unfolding responses of the existing PDB proteins as shown in Fig. 2C, 
construct de novo force-separation responses transferring between 
those different patterns, and generate the corresponding proteins, thus 
studying how the patterns of the unfolding force responses and their 
transition affect the protein sequence mutations and internal struc-
ture variations. At the same time, as the designed de novo proteins in-
crease in number, their sequences and mechanical unfolding responses 
can be used as growing data to gradually increase the protein dataset on 
mechanical properties and our model can be further trained on this 
growing set. With the more powerful model, one can further study 
some challenging topics, such as designing proteins with optimal 
mechanical properties or even their combination in various engi-
neering and biological applications.

While we have developed the pLDM that takes the mechanical 
unfolding responses as the design conditions here, we expect that 
similar pLDM frameworks can be generalized for other property-
to-sequence design tasks in proteins. The enhancement brought by 
merging pretrained pLMs can be inspiring for other design tasks, 
especially where only small datasets on the property of interest are 
available or affordable at the beginning. At the same time, going 
beyond only one type of condition as the design target, our pLDM 
can also be generalized for design tasks under multiple objectives, 
given the flexibility of the diffusion model in incorporating these 
conditions (Fig. 3B). Combining the previous work using a pDM 
(56), one example can be taking both secondary structure and un-
folding forces as the design target. Also, during the generation 
process, techniques like inpainting through selective masking or 
biasing certain amino acids (102) are straightforward to imple-
ment. Combining these under the pLDM framework, we envision 
a comprehensive generative model that moves towards designing 
proteins at all levels, including sequence, structure, and properties 
in harmony.

MATERIALS AND METHODS
Protein mechanical unfolding simulations by MD
We use Nanoscale Molecular Dynamics (NAMD) to perform full-atom 
MD simulations. The interaction between protein atoms is described by 
the CHARMM force field (84). We adopt a generalized Born implicit 
solvent model (85) for the effect of solvent on proteins. Compared 
with simulations with an explicit solvent model, our setup balances 
the accuracy and the computational costs. We develop a parallel 
workflow to simulate the mechanical unfolding process of about 
7026 proteins of various sequence lengths.

Dataset
We curate the dataset based on the MD results. Key information for 
each protein case includes PDB ID, protein sequence, sequence 
length, pulling force vector, strength, and toughness. See Fig. 2 for 
details on their distributions. We use 85% of the dataset for training 
and keep 15% for testing.

Design of the neural network architectures and training
The pLDM developed here consists of a pretrained pLM and a diffusion 
model. Only the latter is trainable. For the pretrained pLM, we use a 
variant with 150 million parameters from the ESM-2 series of models 
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(26, 88). During training, we first propagate a mini-batch of B tokenized 
sequences with a length smaller than or equal to N in terms of a B × 
1 × N tensor to the last hidden layer of the pretrained pLM to compute 
the logits, then normalize them into a B × M × N tensor, where the 
M components in the second dimension represent the probability of 
that position being each of the M words in the pLM model. The dif-
fusion model only operates in this word probability space introduced 
by the pLM. At deployment, the output of the diffusion model is 
translated back to the tokenized sequences by sampling the word 
with the highest probability.

Protein folding
We adopt OmegaFold (23) for rapid prediction of protein structures 
from the sequences. OmegaFold offers a rapid alternative as it does 
not require MSA, yet produces results of similar accuracy as Alpha-
Fold2 (20) and trRosetta (103) (and similar, related state of the 
art methods).

Design accuracy evaluation
We use various metrics to compare the measured mechanical un-
folding responses and mechanical properties with the input design 
conditions for individual designs as well as predictions for the 
whole test set.

For vectors, including the unfolding pulling force vector for one 
protein and toughness or strength for proteins in the test set, the R2 
and relative L2 error are defined as the following

 

where �⃑x is the ground truth or input vector and �⃑y is the measured 
one from the predictions, xi and yi are their components, and x is the 
mean of the components xi.

For scalars, including the toughness and strength for one protein, 
the relative L1 error is defined as the following

where x is the ground truth or input value and y is the measured 
value based on the prediction.

BLAST analysis
The BLAST analysis (89) for the various cases is conducted using the 
blastp (protein-protein BLAST) algorithm and the nonredundant 
protein sequences (nr) database.

Visualization
We use Visual Molecular Dynamics (104) for visualization of the 
protein structures.

Software versions and hardware
We use Python 3.9.16, PyTorch 1.12.1 + cu13 (105) with CUDA (CUDA 
version 12.0), and an NVIDIA Tesla V100 with 32 GB VRAM for 
training and inference.

Supplementary Materials
This PDF file includes:
Fig. S1
Table S1
Legends for movies S1 to S8
Legends for data S1 to S4

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S8
Data S1 to S4
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