Simulation of the indoor climate of livestock buildings to assess of adaptive measures to reduce heat stress due to climate change

Christian Mikovits, Ronja Vitt and Günther Schauberger

WG Environmental Health Department of Biomedical Sciences University of Veterinary Medicine Vienna, Austria

ISAEW 2017 International Symposium on Animal Environment and Welfare Rongchang, Chongqing, 23 to 26 October 2017

Model structure

Balance equations Sensible heat Latent heat CO₂

odour (NH₃)

Temporal resolution

one hour (steady-state)

Air Treatment

heating, cooling pads, fogging, earth tubs, heat exchange

Limitation

mechanically ventilated building

vetmeduni vienna

Objectives

Background

Impact assessment of climate change scenarios on farm animals in confined livestock buildings

Animals

Building

Construction elements (setup and area)

Wall, ceiling, windows and doors

Sensible heat S_B loss due to thermal transmittance

Heat transfer coefficient (U value) Sum of the two convective heat transfer coefficients (air-wall) and the thermal conductivity (wall)

 $S_{B} = U A (T_{o} - T_{i})$

Application of the model

animals

Reference data (1981-2010)

Climate change scenario RCP 4.5 (2036-2065)

Core Module: Mechanical ventilation

Air treatment: cooling pads, fogging, earthair Heat exchanger, heat exchanger

Management: inverted feeding regime, animal density

vetmeduni

vetmedu

Ventilation system

Air treatment

Output of the simulation

Thermal environment

indoor temperature and humidity condensation heat stress indices ~ THI

Indoor air quality = emission concentration

 $CO_2 \sim GHG$ NH₃ ~ precursor for PM odour ~ annoyance

vetmeduni

etmeduni vienna

Thermal indoor climate

Relative humidity F (%)				
Indoor	< 50	50 - 70	> 70	Sum
temperature				
T _i > 20°C	12.6	10.5	3.9	27.0
$16^{\circ}C \le T_i \le 20^{\circ}C$	1.4		39.0	57.4
Τ _i < 16°C	0	0	16.6	16.6
Sum	14.0	26.5	59.5	100

Optimum

Heat stress measures

vetmeduni vienna

Assessment of heat stress

Heat stress metrics

Single values: Temperature **Combined values:** THI ~ combination of temperature and Humidity (and air velocity) exceedance of a certain threshold

Performance / welfare / health measures Impact related measures

Daily weight gain

Feed conversion ratio

Laying performance / milk production

? Welfare measures

? Health measures (~ need of medication)vetmeduna

Heatstress 1981 to 2010

Increase of heat stress indicators about 1% / a

Hours above the controllable range

Hours per year above the controllable temperature range

Model application

Impact on livestock

- Business as usual: assessment of the resilience
- Adaptation measures: costs and benefits
- Vulnerability and adaptive capacity

Impact on the environment

- CH₄ ~ not relevant for pig and poultry
- CO₂ ~ GHG
- $NH_3 \sim precursor$ for PM, eutrophication
- odour ~ separation distance to avoid annoyance

vetmeduni vienna

Acknowledgements

The investigation was partly funded by the Austrian Climate and Energy Fund in the framework of the Austrian Climate Research Program

PiPoCooL Climate change and future pig and poultry production: implications for animal health, welfare, performance, environment and economic consequences is

(ACRP8 - PiPoCooL - KR15AC8K12646)

www.vetmeduni.ac.at/pipocool/

vetmeduni vienna