Aus dem Department/Universitätsklinik für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin der Veterinärmedizinischen Universität Wien (Departmentsprecher: Univ.-Prof. Dr.med.vet. Michael Hess)

Fach: Tierernährung
(Leitung: Prof. Dr.sc.agr. Qendrim Zebeli)

BEOBACHTUNGEN ZUR CAECOTROPHIE BZW. KOPROPHAGIE BEI ZWERGHAMSTER, DEGU UND CHINCHILLA

Diplomarbeit zur Erlangung des Grades einer Magistra medicinae veterinariae der Veterinärmedizinischen Universität Wien

vorgelegt von Adjet Makawey
Wien, im Dezember 2011
Betreuer: Ao.Univ.-Prof. Dr.med.vet. Christine Iben, Institut für Tierernährung

Begutachter: Ao.Univ.-Prof. Dr.med.vet. Alois Strasser, Institut für Physiologie, Pathophysiologie, und Biophysik, Abteilung Physiologie
Inhaltsverzeichnis

1 Einleitung1
2 Literaturübersicht2
 2.1 Dsungarischer Zwerghamster (*Phodopus sungorus*) ..2
 2.1.1 Taxonomie ...2
 2.1.2 Biologie ...2
 2.1.3 Anatomie und physiologische Besonderheiten des Gastrointestinaltraktes3
 2.2 Gewöhnlicher Degu (*Octodon degus*) ...3
 2.2.1 Taxonomie ...3
 2.2.2 Biologie ...3
 2.2.3 Anatomie und physiologische Besonderheiten des Gastrointestinaltraktes3
 2.3 Kurzschwanzchinchilla (*Chinchilla chinchilla*) ...5
 2.3.1 Taxonomie ...5
 2.3.2 Biologie ...5
 2.3.3 Anatomie und physiologische Besonderheiten des Gastrointestinaltraktes6
 2.4 Koprophagie ...6
 2.4.1 Allgemein ..6
 2.5 Caecotrophie ...7
 2.5.2 Caecotrophie bei Chinchilla, Degu und Zwerghamster8
3. Tiere, Material und Methode .. 10
 3.1 Tiere 10
 3.2 Materialien ... 11
 3.3 Laboranalysen .. 11
 3.3.1 Trockensubstanz (TS)... 11
 3.3.2 Rohasche (Ra) .. 12
 3.3.3 Rohprotein (Rp) ... 12
 3.4 Untersuchungen an den Tieren .. 12
 3.4.1 Vorbereitung der Tiere ... 12
 3.4.2 Versuchsphase I ... 12
 3.4.3 Versuchsphase II .. 14
4. Ergebnisse 16
 4.1 Versuchsphase I .. 16
4.2 Versuchsphase II ... 16
 4.2.1 Zwerghamster ... 16
 4.2.2 Degu .. 17
 4.2.3 Chinchilla ... 17
 4.3 Laborergebnisse .. 18
5. Diskussion .. 21
6. Zusammenfassung .. 23
7. Summary .. 24
8. Literaturverzeichnis .. 25
1 Einleitung

2 Literatureübersicht

2.1 Dsungarischer Zwerghamster (*Phodopus sungorus*)

2.1.1 Taxonomie

nach GÖBEL u. EWRINGMANN (2005):

Ordnung *Rodentia* – Nagetiere
 Familie *Muridae* – Mäuseartige
 Unterfamilie *Cricetinae* – Wühler
 Gattung *Phodopus* – Kurzschwanz-Zwerghamster
 Art *Phodopus sungorus* – Dsungarischer Zwerghamster

2.1.2 Biologie

Der dsungarische Zwerghamster stammt ursprünglich aus Asien und bewohnt die Steppen Kasachstans, der Mongolei und die südwestlichen Teile Sibiriens (GÖBEL u. EWRINGMANN, 2005). Dieses dämmerungsaktive Nagetier lebt eher selten in selbstgegrabenen Bauten, sondern bevorzugt unterirdische Behausungen anderer Kleinsäugetiere, um diese zu erweitern.

Die Bezeichnung Kurzschwanz-Zwerghamster (Gattung *Phodopus*) beruht auf der Tatsache, dass der Schwanz ein Rudiment darstellt und nicht über das Rumpfende hinausragt. Der Zwerghamster besitzt eine Kopf-Rumpf-Länge von 7 bis 10 cm. Die Färbung des Haarkleides ist auf der Oberseite graubraun bis beige, die Flanken und der Bauch sind weiß gefärbt. Ein besonderes Merkmal des Fells ist der schwarze Aalstrich entlang des Rückens (GÖBEL u. EWRINGMANN, 2005).

Abb. 1: *Phodopus sungorus*
Sie ernähren sich hauptsächlich von Pflanzensamen und nehmen in geringen Mengen tierisches Eiweiß aus Insekten und Spinnen auf. Wie alle Hamsterarten besitzen auch Dsungarische Zwerghamster Backentaschen, die Ausstülpungen der Backenschleimhaut darstellen und als Futterdepots dienen (ISENBÜGEL u. FRANK, 1985).

2.1.3 Anatomie und physiologische Besonderheiten des Gastrointestinaltraktes

Zwerghamster benötigen tierisches Eiweiß, zum Beispiel in Form von Milch, Mehlwürmern, Fisch oder hartgekochten Eiern, um zu Vitamin K und Vitamin-B-Komplex zu gelangen (SALOMON et al., 2005).

2.2 Gewöhnlicher Degu (Octodon degus)

2.2.1 Taxonomie

nach GÖBEL u. EWRINGMANN (2005):

Ordnung Rodentia – Nagetiere
 Familie Octodontidae – Trugratten
 Gattung Octodon – Strauchratten
 Art Octodon degus – Gewöhnlicher Degu

2.2.2 Biologie

In Europa wird vorzugsweise der Gewöhnliche Degu als Heimtier gezüchtet und gehalten. Andere Vertreter der Gattung Strauchratten (Octodon) sind der Pazifik-Degu (Octodon

2.2.3 Anatomie und physiologische Besonderheiten des Gastrointestinaltraktes

2.3 Kurzschwanzchinchilla (*Chinchilla chinchilla*)

2.3.1 Taxonomie

nach GÖBEL u. EWRINGMANN (2005)

Ordnung *Rodentia* – Nagetiere

Unterordnung *Caviomorpha* - Meerschweinchenverwandte

Familie *Chinchillidae* – Chinchillas

Art *Chinchilla brevicaudata* – Kurzschwanzchinchilla

2.3.2 Biologie

Das Chinchilla stammt aus den südamerikanischen Anden. In den Ländern Argentinien, Bolivien, Chile und Peru sind sie in auffallend großen Gruppen, zum Teil mit mehr als einhundert Individuen ansässig (GÖBEL u. EWRINGMANN, 2005).

Heute verfügt Südamerika nur noch über Restpopulationen dieser Tiere. Sie leben in Familienverbänden, wobei diese aus einem monogamen Paar und dessen weibliche Nachkommen aufgebaut sind.

Männlichen Chinchillas werden mit Erreichen der Geschlechtsreife vertrieben (GÖBEL u. EWRINGMANN, 2005). Ab diesem Zeitpunkt nehmen sie nicht mehr an der alten Familienstruktur teil, sondern begeben sich auf die Suche nach einem Weibchen. Nachts und bei Dämmerung hält sich das Chinchilla auf felsigen, karg bewachsenen Felshängen auf. Während des Tages bewohnen sie Felsen, Zwischenfelsspalten und Höhlen, die bis zu 5000 m über dem Meeresspiegel liegen (GÖBEL u. EWRINGMANN, 2005).

2.3.3 Anatomie und physiologische Besonderheiten des Gastrointestinaltraktes

2.4 Koprophagie

2.4.1 Allgemein

Befinden. Trächtige Tiere haben ein gesteigertes Koprophagieverhalten (BROWN u. DONNELLY, 2004).

2.5 Caecotrophie

Kängururatte und der kalifornischen Wühlmaus häufig Caecotrophie beobachtet werden (KENAGY u. HOYT, 1980).

2.5.2 Caecotrophie bei Chinchilla, Degu und Zwerghamster

3. Tiere, Material und Methode

3.1 Tiere

Die dsungarischen Zwerghamster waren beide männlich. Beim Erhalt aus der Zoohandlung waren die Tiere etwa sechs Wochen alt und hatten ein Körpergewicht von 25 g und 31 g.

Die vier Degus waren weibliche Tiere. Beim Ankauf waren die Tiere acht Wochen alt und wogen 95 g, 110 g, 129 g und 144 g. Schon zu diesem Zeitpunkt waren deutliche Größenunterschiede erkennbar.

Bei den Chinchillas handelt es sich um zwei männliche Kurzschwanz-Chinchillas. Als die Tiere angekauft wurden, waren sie zwölf Wochen alt und waren 332 g und 361 g schwer.

Die Zwerghamster hatten zu Versuchsende ein Körpergewicht von 37 g und 45 g, die Degus waren 125 g, 147 g, 149 g und 160 g schwer und die Chinchillas wogen 391 g und 420 g.

Für die Tiere wurde täglich, morgens und abends, Heu, frisches Grünfutter (Karotten, Äpfel, grüner Salat und Chicorée) und pellettiertes Alleinfutter, entsprechend der jeweiligen Tierart, bereitgestellt. Die Wasserzufuhr erfolgte über Heimtiertränken ad libitum.

3.2 Materialien

Für jede der drei Tierarten wurden zwei verschiedene Käfigtypen benötigt. Ein Käfig mit Einstreu, Unterhaltungs- und Unterschlupfeinrichtungen, Heu, Futternapf und Tränkflasche. Der zweite Käfigtyp war für die Beobachtungsphase und war mit einer trittsicheren, saugfähigen Unterlage und einer Heimtiertränke ausgestattet. Für die Chinchillas und Degus standen Nagetierkäfige mit den Maßen 100 x 60 x 50 cm zur Verfügung. Die Zwerghamster waren in Makrolonkäfigen mit den Maßen 55 x 40 x 20 cm untergebracht. Modifizierte Halskragen für Nager (von Buster, transparent, 5 cm) wurden für die Chinchillas verwendet. Zwerghamster und Degus wurden mit selbst gebastelten Halskragen aus transparenter Hartfolie ausgestattet.

Zum Abwiegen des Kotes wurde eine Analysenwaage verwendet. Der gesammelte Kot wurde in luftdicht verschließbaren Kunststoffbehältnissen bei -20 °C aufbewahrt.

3.3 Laboranalysen

3.3.1 Trockensubstanz (TS)

Die Trockensubstanz und das Rohwasser wurden mit der Weender Analyse bestimmt. Die Trockensubstanz beinhaltet jene bei 103 °C nichtflüchtigen Bestandteile des Futters. Sie ist durch Trocknen in einem Trockenschrank bei 103 °C bestimmbar (KAMPHUES et al., 2004).
3.3.2 Rohasche (Ra)

Die Rohasche besteht aus Mengen- und Spurenelementen und aus sonstigen anorganischen Substanzen. Rohasche kann durch eine sechsständige Veraschung der Probe in einem Muffelofen bei 550 °C gewonnen und bestimmt werden (KAMPHUES et al., 2004).

3.3.3 Rohprotein (Rp)

3.4 Untersuchungen an den Tieren

3.4.1 Vorbereitung der Tiere

In den ersten paar Tagen vor Beginn der Versuchsphase I wurden die Tiere an das Tragen der Halskragen gewöhnt und notwendige Größenänderungen vorgenommen. Die Tiere wurden mehrmals am Tag für kurze Zeit mit dem Halskragen ausgestattet.

3.4.2 Versuchsphase I

Für die Beobachtungszeit wurden die Tiere in einen einstreulosen Käfig gesetzt und jedem Tier wurde ein Halskragen angelegt. Die Degus wurden nicht voneinander getrennt, sondern als Vierergruppe beobachtet, die Zwerghamster wurden separiert und die Chinchillas blieben zu zweit.
Tab. 1: Beobachtungsprotokoll, Versuchsphase I

<table>
<thead>
<tr>
<th>Tierart</th>
<th>Anzahl der Tage</th>
<th>Zeitraum</th>
<th>Beobachtungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dsungarischer Zwerghamster</td>
<td>6</td>
<td>17:30 – 22:00 Uhr</td>
<td>21 Stunden</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18:30 – 22:45 Uhr</td>
<td>3 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23:30 – 1:15 Uhr</td>
<td>3 Stunden 15 Minuten</td>
</tr>
<tr>
<td>Degu</td>
<td>4</td>
<td>18:15 – 22:30 Uhr</td>
<td>14 Stunden</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>19:30 – 23:00 Uhr</td>
<td>3 Stunden</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>22:30 – 2:15 Uhr</td>
<td>3 Stunden 30 Minuten</td>
</tr>
<tr>
<td>Chinchilla</td>
<td>2</td>
<td>18:30 – 22:45 Uhr</td>
<td>7 Stunden</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17:30 – 22:00 Uhr</td>
<td>4 Stunden</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21:00 – 22:00 Uhr</td>
<td>2 Stunden 15 Minuten</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>22:30 – 1:15 Uhr</td>
<td>2 Stunden 30 Minuten</td>
</tr>
</tbody>
</table>

3.4.3 Versuchsphase II

<table>
<thead>
<tr>
<th>Tierart</th>
<th>Anzahl der Tage</th>
<th>Zeitraum</th>
<th>Beobachtungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dsungarischer Zwerghamster</td>
<td>12</td>
<td>18:30 – 22:30 Uhr</td>
<td>42 Stunden</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5:15 – 7:00 Uhr</td>
<td>4 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10:00 – 13:00 Uhr</td>
<td>7 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17:30 – 20:00 Uhr</td>
<td>4 Stunden</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>14:45 – 17:45 Uhr</td>
<td>2 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12:00 – 15:00 Uhr</td>
<td>10 Stunden</td>
</tr>
<tr>
<td>Degu</td>
<td>7</td>
<td>18:15 – 22:30 Uhr</td>
<td>24 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>19:00 – 22:15 Uhr</td>
<td>16 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14:30 – 17:30 Uhr</td>
<td>7 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17:45 – 20:00 Uhr</td>
<td>2 Stunden</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13:45 – 15:00 Uhr</td>
<td>3 Stunden</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9:00 – 11:30 Uhr</td>
<td>4 Stunden 30 Minuten</td>
</tr>
<tr>
<td>Chinchilla</td>
<td>6</td>
<td>18:45 – 22:30 Uhr</td>
<td>15 Stunden</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>19:15 – 22:15 Uhr</td>
<td>10 Stunden</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5:15 – 8:00 Uhr</td>
<td>10 Stunden</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10:00 – 13:00 Uhr</td>
<td>7 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14:30 – 17:30 Uhr</td>
<td>7 Stunden 30 Minuten</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22:30 – 2:00 Uhr</td>
<td>6 Stunden</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13:00 – 15:00 Uhr</td>
<td>4 Stunden 30 Minuten</td>
</tr>
</tbody>
</table>

4. Ergebnisse

4.1 Versuchsphase I

4.2 Versuchsphase II

4.2.1 Zwerghamster

In der Beobachtungszeit nach Entfernen des Halskragens waren die Tiere wesentlich entspannter und neugieriger. Es konnte beobachtet werden, dass einer der dsungarischen Zwerghamster seinen Kot vom Käfigboden gefressen hat, etwa drei Sekunden nachdem er ihn absetzte. Es war auffällig, dass beide Tiere öfters am umher liegenden, eigenen Kot geschnuppert haben. Es wurden keine Bewegungen seitens der Tiere gemacht, die darauf schließen ließen, dass sie Kot vom Anus aufnehmen wollten.
4.2.2 Degu

4.2.3 Chinchilla

Im Vergleich zu den anderen Tierarten waren die Chinchillas generell etwas zurückhaltender. Die halskragenfreie Beobachtungszeit zeigte, dass die Tiere dennoch Interesse an ihrem Kot haben. Das war daran erkennbar, dass ein Tier einen nicht frisch abgesetzten Kot in der Pfote hielt und daran nagte. Die Tiere beschnupperten auch öfters die Kotkugelchen vom Käfigboden. Die charakteristische Kopf­bewegung zum Erlangen des Kotes direkt vom Anus, konnte auch bei den Chinchillas beobachtet werden. Die Tiere waren jedoch geschickter und flinker als die Degus, sodass es nur zweimal möglich war ein Kotkugelchen zu erfassen.
4.3 Laborergebnisse

Tab. 3: Laborergebnisse Degu, normaler Kot

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Kot [g]</th>
<th>TS [%]</th>
<th>Ra [%]</th>
<th>Rp [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1</td>
<td>25,10</td>
<td>61,0</td>
<td>in uS 8,0</td>
<td>in uS 9,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in TS 13,2</td>
<td>in TS 15,6</td>
</tr>
<tr>
<td>D 2</td>
<td>12,8</td>
<td>60,7</td>
<td>in uS 6,8</td>
<td>in uS 8,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in TS 11,2</td>
<td>in TS 14,2</td>
</tr>
<tr>
<td>D 3</td>
<td>13,4</td>
<td>47,7</td>
<td>in uS 6,4</td>
<td>in uS 5,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in TS 13,4</td>
<td>in TS 11,2</td>
</tr>
<tr>
<td>D 4</td>
<td>0,06</td>
<td>53,0</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Aufgrund der zu geringen gewonnenen Menge keine Analyse möglich

Tab. 4: Laborergebnisse Degu, vermuteter Blinddarmkot

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Kot [g]</th>
<th>TS [%]</th>
<th>Ra [%]</th>
<th>Rp [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 5</td>
<td>0,07</td>
<td>52,5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D 6</td>
<td>5,64</td>
<td>47,7</td>
<td>in uS 6,4</td>
<td>in uS 6,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in TS 13,4</td>
<td>in TS 12,6</td>
</tr>
</tbody>
</table>

* Aufgrund der zu geringen gewonnenen Menge keine Analyse möglich

Die Laborergebnisse der beiden Fäzesarten ergaben beim Degu keine erkennbaren Unterschiede hinsichtlich Trockensubstanz, Rohasche und Rohprotein (siehe Tabellen 3 und 4). Die Trockensubstanz des vermuteten Blinddarmkots lag mit 52,5 % bzw. 47,7 % nahe dem niedrigsten Wert des normalen Kots (47,7 %). Die Beobachtungen jedoch zeigten eine Kotaufnahme vom Boden und vom Anus. Da durch die Rohproteinergebnisse der Laboranalyse auch keine Unterschiede aufgezeigt werden können, ist anzunehmen, dass es sich um Koprophagie handelt.
Tab. 5: Laborergebnisse Chinchilla, normaler Kot

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Kot [g]</th>
<th>TS [%]</th>
<th>Ra [%]</th>
<th>Rp [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>58,41</td>
<td>32,9</td>
<td>in uS 4,7</td>
<td>in uS 4,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in TS 14,2</td>
<td>in TS 13,1</td>
</tr>
</tbody>
</table>

Tab. 6: Laborergebnisse Chinchilla, vermuteter Blinddarmkot

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Kot [g]</th>
<th>TS [%]</th>
<th>Ra [%]</th>
<th>Rp [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 2</td>
<td>0,340</td>
<td>27,6</td>
<td>-*</td>
<td>-*</td>
</tr>
<tr>
<td>C 3</td>
<td>0,539</td>
<td>24,7</td>
<td>-*</td>
<td>-*</td>
</tr>
</tbody>
</table>

* Aufgrund der zu geringen gewonnenen Menge keine Analyse möglich

Die Menge des gewonnenen und vermuteten Blinddarmkotes der Chinchillas war zu gering für eine Analyse des Rohproteins und der Rohasche. Die Trockensubstanz des normalen Kotes beträgt 32,9 % und vom vermuteten Blinddarmkot 24,7 bzw. 27,6 %. Zwar ist die Trockensubstanz beim Blinddarmkot geringer, der Unterschied ist aber nicht signifikant. Infolge der Beobachtung der charakteristischen Kopfbewegung zum Anus und das Benagen eines vom Käfigboden genommen Kotkügelchens, kann man auch bei dieser Tierart von Koprophagie als besonderem Verhalten sprechen.

Tab. 7: Laborergebnisse Zwerghamster, normaler Kot

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Kot [g]</th>
<th>TS [%]</th>
<th>Ra [%]</th>
<th>Rp [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 1</td>
<td>6,53</td>
<td>57,5</td>
<td>in uS 7,5</td>
<td>in uS 17,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in TS 13,1</td>
<td>in TS 30,3</td>
</tr>
</tbody>
</table>

Beim Zwerghamster konnte aufgrund der fehlenden charakteristischen Kopfbewegung sowie der fehlenden optischen Merkmale des gefressenen und des unbeachteten Kotes nur eine Kotart (normaler Kot) analysiert werden. Der normale Kot des dsungarischen Zwerghamsters enthält deutlich mehr Rohprotein als der vermutete Blinddarmkot des Degus (siehe Tabellen 4 und 7). Der Zwerghamster nimmt Kotkügelchen, die sich optisch nicht voneinander unterschieden, vom Käfigboden wieder oral auf, betreibt also Koprophagie.
Zusammenfassend kann somit festgehalten werden, dass Degus und Chinchillas ihren Kot vom Anus aufnehmen und Koprophagie betreiben und Zwerghamster ihren Kot vom Käfigboden aufnehmen und somit auch Koprophagie betreiben.
5. Diskussion

6. Zusammenfassung

7. Summary

The aim of this thesis was to study the behaviour of the Djungarian dwarf hamster, the degu and the short-tailed chinchilla concerning coprophagy or cecotrophy. The animals were observed over a period of six weeks. In trial phase I they had to wear a collar. In trial phase II they were without collar. For the time of observing the animals stayed in cages without litter in order to find out whether they take up feces of the cage ground or directly from the anus.

The observation showed that the Djungarian dwarf hamster ate excrements from the cage ground, hence it practises coprophagy. However, the degus and chinchillas were observed doing a characteristic move and thereby ingested their feces directly from the anus. The intake could be inhibited by a quick and soft manual push. The feces fell down to the ground or stuck to the anus. The likely caecotroph looks morphologically like the normal feces. However the animals could differentiate both types of feces. When the degus or chinchillas were offered again the likely caecotroph and the normal feces, they ate the likely caecotroph. Nevertheless, the lab analysis of dry substance, raw ash and raw protein revealed no significant difference between likely caecotroph and normal feces and this is indicative of practising coprophagy. Differences in the concentration of microorganismns or vitamins with co-enzyme function are explicitly not part of this thesis.
8. Literaturverzeichnis

