Forschungsinstitut für Wildtierkunde und Ökologie

Aus dem Department für Integrative Biologie und Evolution
der Veterinärmedizinischen Universität Wien

(Departmentleitung: O. Univ.-Prof. Dr. rer. nat. Walter Arnold)

Fach: Physiologie

EINFLUSS UNGESÄTTIGTER FETTSÄUREN AUF DIE REPRODUKTION DER
MF1-LABORMAUS

Diplomarbeit

Zur Erreichung des akademischen Grades
Magistra Medicinae Veterinariae (Dipl.Tzt.)
an der Veterinärmedizinischen Universität Wien

Vorgelegt von
Julia Anna Margot Diels

Wien, im Mai 2014
Betreuerin: Priv.Doz. Dr. rer. nat. Teresa G. Valencak
Inhaltsverzeichnis

1. EINLEITUNG ... 1
 1.1 Fettsäuren aus biochemischer Perspektive .. 1
 1.2 Bedeutung ungesättigter Fettsäuren in der Ernährung ... 3
 1.3 Die „Membran-Schrittmacher-Hypothese“ .. 5
 1.4 Die „heat dissipation limit“-Hypothese ... 7
 1.5 Die MF1-Maus als Studienmodell ... 9
 1.6 Rolle der ungesättigten Fettsäuren am Beispiel der MF1-Labormaus 10

2. MATERIAL UND METHODEN ... 12
 2.1 Versuchstiere und Haltungsbedingungen ... 12
 2.2 Körpertemperaturmessung mittels LifeChip® ... 15
 2.3 Futtersorten und Futterverbrauch ... 18
 2.4 Körpergewichtsbestimmung ... 25
 2.5 Statistik ... 26
 2.6 Ethik ... 27

3. ERGEBNISSE .. 28
 3.1 Körpergewicht der Weibchen außerhalb der Reproduktionsphase 28
 3.2 Körpergewicht während Trächtigkeit und Laktation .. 31
 3.3 Gewichtsentwicklung der Jungtiere während der Laktation 34
 3.4 Futterverbrauch und Energieaufnahme nicht reproduzierender Weibchen 36
 3.5 Futterverbrauch und Energieaufnahme während der Laktation 38
 3.6 Körpertemperatur der Weibchen außerhalb der Reproduktionsphase 40
 3.7 Körpertemperatur während Verpaarung,Trächtigkeit und Laktation 45
4. DISKUSSION .. 51

4.1 Körpergewicht der Weibchen außerhalb der Reproduktionsphase 51
4.2 Körpergewicht während Trächtigkeit und Laktation... 52
4.3 Gewichtsentwicklung der Jungtiere während der Laktation 53
4.4 Futterverbrauch und Energieaufnahme nicht reproduzierender Weibchen 53
4.5 Futterverbrauch und Energieaufnahme während der Laktation 54
4.6 Körpertemperatur der Weibchen außerhalb der Reproduktionsphase 55
4.7 Körpertemperatur während Verpaarung, Trächtigkeit und Laktation 56
4.8 Aspekte der Jungtierentwicklung .. 57

5. ZUSAMMENFASSUNG .. 59

6. SUMMARY .. 61

7. LITERATURVERZEICHNIS ... 62

8. ABBILDUNGSVERZEICHNIS .. 70
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>AA</td>
<td>arachidonic acid, Arachidonsäure</td>
</tr>
<tr>
<td>AL</td>
<td>ad libitum</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate, Grundumsatz</td>
</tr>
<tr>
<td>C-Atom</td>
<td>Kohlenstoffatom</td>
</tr>
<tr>
<td>cm³</td>
<td>Kubikzentimeter</td>
</tr>
<tr>
<td>COOH</td>
<td>Carboxylgruppe</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>DHA</td>
<td>decosahexaenoic acid, Decosahexaensäure</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleic acid, Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DOL</td>
<td>day of lactation, Tag der Laktation</td>
</tr>
<tr>
<td>EFA</td>
<td>essential fatty acids, essentielle Fettsäuren</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>HDL</td>
<td>heat dissipation limit</td>
</tr>
<tr>
<td>ID</td>
<td>identification number, Identifikationsnummer</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>LA</td>
<td>linolenic acid, Linolsäure</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>LNA</td>
<td>alpha-linolenic acid, alpha-Linolensäure</td>
</tr>
<tr>
<td>LOX</td>
<td>Lipooxygenase</td>
</tr>
<tr>
<td>ME</td>
<td>metabolisable energy, metabolisierbare Energie</td>
</tr>
<tr>
<td>MJ</td>
<td>Megajoule</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acids, einfach ungesättigte Fettsäuren</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acids, mehrfach ungesättigte Fettsäuren</td>
</tr>
<tr>
<td>RFID</td>
<td>radiofrequency identification</td>
</tr>
<tr>
<td>RMR</td>
<td>resting metabolic rate, Ruheumsatz</td>
</tr>
<tr>
<td>SFA</td>
<td>saturated fatty acids, gesättigte Fettsäuren</td>
</tr>
<tr>
<td>SusEI</td>
<td>sustained energy intake</td>
</tr>
<tr>
<td>Ta</td>
<td>ambient temperature, Umgebungstemperatur</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acids, ungesättigte Fettsäuren</td>
</tr>
</tbody>
</table>
1. EINLEITUNG

1.1 Fettsäuren aus biochemischer Perspektive

„Gesättigt“ oder „ungesättigt“?

korrekte Schreibweise ist hier 18:1) (HORN, 2012). Weil die physiologischen Eigenschaften ungesättigter Fettsäuren von der relativen Position der ersten Doppelbindung zum Omega-Ende abhängen, werden diese als „Omega minus n“-, kurz „Omega-n“-Fettsäuren bezeichnet. Für alle Fettsäuren gibt es einen Lipidnamen, der in der Form X:Y (ω−n) (mit X = Länge der C-Kette, Y = Anzahl der Doppelbindungen, n= Position der ersten Doppelbindung relativ zum Omega-Ende) angegeben wird. Für die Omega-3- (n-3-) Fettsäure Alpha-Linolensäure ergibt sich der Lipidname 18:3 (ω−3) bzw. 18:3 (n-3), für die Omega-6- (n-6-) Fettsäure Arachidonsäure 20:4 (ω−6) bzw. 20:4 (n-6) und für die Omega-9- (n-9-) Fettsäure Ölsäure 18:1 (ω−9) bzw. 18:1 (n-9) (BELITZ, 2008; WIKIPEDIA, 2014) (Beispiel siehe Abb. 3).

Abb. 1 Stearinsäure (18:0), Beispiel einer gesättigten Fettsäure

(Quelle: http://commons.wikimedia.org/wiki/File:Stearins%C3%A4ure.svg?uselang=de)

Abb. 2 Ölsäure (18:1), Beispiel einer ungesättigten cis-Fettsäure

(Quelle: http://commons.wikimedia.org/wiki/File:Oleic-acid-skeletal.svg?uselang=de)
Abb. 3 Strukturformel der α-Linolensäure, links Carboxygruppe (COOH), rechts das (ω)-C-Atom. Die unterschiedlichen physiologischen (rot) und chemischen (blau) Nummerierungskonventionen sind eingezeichnet. Am Beispiel ist auch der Lipidname „18:3 (ω-3)“ bzw. „18:3 (n-3)“ nachvollziehbar

(Quelle: http://commons.wikimedia.org/wiki/File:ALAnumbering.svg)

1.2 Bedeutung ungesättigter Fettsäuren in der Ernährung

„Gutes“ oder „schlechtes“ Fett?

Fettsäuren in der Ernährung des Menschen sowie der Tiere dienen schon seit einigen Jahrzehnten als Diskussionsgrundlage für Ernährungswissenschaftler und doch ist deren Bedeutung bis heute nicht ausreichend und vollständig erforscht. Fettsäuren werden systematisch unterteilt in gesättigt (saturated fatty acids= SFA) und ungesättigt (unsaturated fatty acids= UFA); mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids= PUFA) können von Säugetieren nicht de novo synthetisiert werden und gelten somit als „essentiell“, da sie über die Nahrung exogen zugeführt werden müssen. Die Effekte einer mit essentiellen Fettsäuren (essential fatty acids= EFA) angereicherten Diät reichen von anti- inflammatorisch bis Zellmembran modulierend; n-6-mehrfach ungesättigte Fettsäuren haben

Um weitere wichtige Erkenntnisse der Auswirkungen von Fettsäuren in der Nahrung zu erhalten, wird weiter nach Antworten gesucht und so will diese Arbeit am Beispiel eines kleinen Säugetiers, der MF1-Labormaus, zeigen, welchen Einfluss der Gehalt an mehrfach ungesättigten Fettsäuren, nämlich n-3- und n-6-PUFAs, in der Nahrung
auf den Energiestoffwechsel, die Körpertemperatur und insbesondere die energetisch hochaufwendige Phase der Reproduktion besitzt.

1.3 Die „Membran-Schrittmacher-Hypothese“

Ist die „Membran-Schrittmacher-Hypothese“ gültig?

PUFAs sind aufgrund ihrer chemischen Struktur durch vom Stoffwechsel produzierte freie Radikale leichter angreifbar als einfach ungesättigte Fettsäuren (monounsaturated fatty acids= MUFA) (HULBERT, 2010); genauer gesagt bedeutet dies, je höher der Gehalt an PUFAs, desto höher der oxidative Stress, desto schneller das Altern und desto kürzer die Lebensspanne eines Säugetiers (HULBERT et al., 2007). Diese „Schrittmacher“-Hypothesen werden jedoch durch neuere Studien teilweise widerlegt und müssen somit auf ihre Allgemeingültigkeit weiter überprüft werden: Eine Studie an 42 unterschiedlichen Säugetiergeweben zeigte keinen Zusammenhang zwischen dem Anteil der für Peroxidation besonders anfälligen PUFA C 22:6 (n-3) (Docosahexaensäure) und der maximalen Lebensspanne von Tieren (VALENCAK & RUF, 2007). Außerdem wurde anhand einer weiteren Studie mit Labortiermausen klar, dass durch Fütterung verschiedener, mit speziellen Fettsäuren angereicherten Diäten (n-3-PUFA, n-6-PUFA und SFA) zwar die Zusammensetzung der Phospholipidmembran beeinflusst wird, aber kein direkter Bezug zur Lebensspanne der Tiere verursacht wird (VALENCAK & RUF, 2011). Desweiteren zeigte eine Studie am Labormausstamm MF1 keinen Zusammenhang zwischen dem Gehalt an DHA in Lebermembranen und dem Ruheumsatz (resting metabolic rate= RMR) (HAGGERTY et al., 2008). Haggerty et al. betonten weiter, dass die „Membran-Schrittmacher-Theorie“ zu gewissen Teilen auf mehrere Säugetierarten zutreffen mag, wenn man verschiedene Spezies untereinander vergleicht. Dabei seien jedoch die individuellen Faktoren (z.B. Körpergewicht und stammesgeschichtliche Aspekte) eines Säugetierstamms bzw. Individuums außer Acht gelassen worden. Diese Hypothese muss daher weiterhin innerhalb einer Spezies überprüft werden, um solche Störfaktoren zu berücksichtigen (HAGGERTY et al., 2008). So wie diese Hypothesen getestet wurden, ist es die Aufgabe der vorliegenden Arbeit, zu testen, ob die Fütterung verschiedener Fettsäurediäten die Reproduktion innerhalb des MF1-Mausstammes beeinflusst. Hierzu lagen bis zum Beginn des Experiments noch keine vergleichbaren Forschungsergebnisse vor. Insbesondere war das Ziel des Experiments, herauszufinden, ob die experimentelle Fütterung von n-3-mehrfach ungesättigten
Fettsäuren die Körpertemperatur, die bei der MF1-Maus während der Laktation um etwa ein Grad Celsius erhöht ist (GAMO, TROUP, et al., 2013a), noch weiter erhöht.

1.4 Die „heat dissipation limit“-Hypothese

Was ist die „heat dissipation limit“ (= HDL)- Hypothese und welche Rolle spielt sie bei der Laktation?

Säugetiere übertragen lässt (JOHNSON & SPEAKMAN, 2001; JOHNSON et al., 2001b; KROL, 2003; SPEAKMAN & KRÓL, 2010).

1.5 Die MF1-Maus als Studienmodell

Die MF1-Labormaus - ein ideales Studienmodell

können beispielsweise ihre Leistung um das 5-fache des Ruheumsatzes steigern, aber nicht darüber hinaus (PIERSMA, 2011).

1.6 Rolle der ungesättigten Fettsäuren am Beispiel der MF1-Labormaus

Wie beeinflussen mehrfach ungesättigte Fettsäuren den Temperaturhaushalt?

Säugetieren beteiligt sind und so ergeben sich auch die folgenden Ziele des von uns durchgeführten Experiments.

Die Hypothesen der vorliegenden Arbeit umfassen folgende Punkte:

1. Aufgrund der vorliegenden Studien („Membran-Schrittmacher-Hypothese“) nahm ich an, dass mehrfach ungesättigte Fettsäuren die Regulation der Körpertemperatur endothermer Säugetiere wie der Maus beeinflussen und hierbei vor allem n-3-mehrfach ungesättigte Fettsäuren (= n-3-PUFA) aufgrund vorhergehender Studien an der Ames-Zwergmaus eine Sonderstellung einnehmen.

2. Eine mit n-3-PUFA angereicherte Diät kann bei MF1-Mäusen eventuell eine höhere Körpertemperatur herbeiführen im Vergleich zur Körpertemperatur bei Fütterung mit herkömmlichem Futter.

3. Gleichermaßen wird angenommen, dass Tiere, die mit einer n-6-PUFA angereicherten Diät gefüttert werden, einerseits eine niedrigere Körpertemperatur als jene Tiere auf der n-3-PUFA Diät haben und andererseits als die Tiere, die mit einer Diät reich an gesättigten Fettsäuren (Kontrolldiät) versorgt werden.

2. MATERIAL UND METHODEN

2.1 Versuchstiere und Haltungsbedingungen

14; während des Experiments n= 15) erhielt fortan eine an gesättigten Fettsäuren reiche Spezialdiät (Zusammensetzung der verschiedenen Diäten siehe Fehler! Verweisquelle konnte nicht gefunden werden., S.24); Gruppe b= n-6 (Anzahl vor Beginn der experimentellen Fütterung n= 14; während des Experiments n=15) eine an 6-fach ungesättigten Fettsäuren reiche Diät und Gruppe c= n-3 (Anzahl vor Beginn der experimentellen Fütterung n= 13; während des Experiments n= 15) das an 3-fach ungesättigten Fettsäuren reiche Experimentalfutter (Zur Bedeutung der verschiedenen Diäten siehe 2.3 Futtersorten und Futterverbrauch).

Abb. 4 Weibliche MF1-Labormaus bei geöffnetem Käfigdeckel. Im Hintergrund sind ein rotes Maushaus bzw. Nestbaumaterialien zu sehen.

Abb. 5 Unterbringung und Haltung der MF1-Mäuse. Wie auf dem Bild erkennbar, standen den Tieren Wasser und Futter *ad libitum* zur Verfügung.
2.2 Körpertemperaturmessung mittels LifeChip

Im Gegensatz zu einer chirurgischen Implantation, die beispielsweise intraperitoneal erfolgt, stellte sich die subkutane Implantation als überaus einfache Methode heraus, die den Vorteil besaß, die Tiere ohne Vollnarkose mit dem LifeChip® zu kennzeichnen. Einflüsse auf den Stoffwechsel, die z.B. durch einen chirurgischen oder anästhetischen Eingriff bedingt wären, sowie das Narkoserisiko, wurden somit eliminiert. Ebenso war der Stress, der möglicherweise durch die einmalige Fixierungsmaßnahme in der Plastikröhre entstand, gegenüber täglichen rektalen Messungen als minimal anzusehen (KORT et al., 1998). Zu beachten war bei dieser Methode des subkutan eingebrachten Transmitters, dass durch die oberflächliche
Lage unterhalb der oberen Hautschichten der Tiere nicht der Temperaturwert der Körperkerntemperatur (Näherungswert hierfür ist die rektal zu ermittelnde Temperatur) erreicht werden konnte (KORT et al., 1998). Der subkutane Wert wies jedoch gleichzeitig eine konstante Differenz auf, wodurch die ermittelten Versuchswerte vergleichbar blieben (siehe 3.6 Körpertemperatur Abb. 26). Der Tageszeitpunkt der Messungen lag immer zwischen 9.00 und 11.00 Uhr vormittags, damit die natürlich auftretenden Schwankungen der Körpertemperatur während eines Tages (REFINETTI, 2003) die von uns ermittelten Werte nicht beeinflussten.

Abb. 6 Injektionsnadel und LifeChip® bei der Implantation
Abb. 7 Platzieren des LifeChip® im Rahmen der subkutanen Implantation

Abb. 8 Auslesen der Identifikationsnummer und der subkutanen Körpertemperatur mittels Global Pocket Reader® am Beispiel einer mit den MF1-Mäusen im gleichen Labor gehaltenen Ames Zwergmaus
2.3 Futtersorten und Futterverbrauch

Zum Zeitpunkt, an dem den MF1-Mäusen der LifeChip® implantiert wurde, also noch vor Beginn der experimentellen Fütterung, erhielten die Tiere Erhaltungs- und Zuchtfutter der Firma Ssniff® Spezialdiäten GmbH in einem Mischungsverhältnis von 1:1 (Detaillierte Inhaltsstoffe siehe Tab. 1):

Beim Erhaltungsfutter handelte es sich um Basisfutter mit mittlerer Energiedichte und niedrigem Nitrosamingehalt, um den Erhaltungsstoffwechsel der Mäuse zu decken. Es bestand zu 58% aus Kohlenhydraten, zu 33% aus Protein und zu 9% aus Fett.

Das Zuchtfutter hingegen bestand zu 49% aus Kohlenhydraten, zu 36% aus Protein und zu 15% aus Fett, war somit durch eine deutlich höhere Energiedichte charakterisiert und sollte die Mäuse auf die Zuchteriode vorbereiten.

Das experimentelle Futter der Gruppe $a = SFA$ enthielt als Fettsäurequelle hauptsächlich 10% Rindertalg, 3% Palmöl und 2% Sojabohnenöl. Als gesättigte Fettsäuren machten Palmitin- (C 16:0) und Stearinsäure (C 18:0) die Hauptbestandteile aus (Abb. 9). Diese Spezialdiät erhielt somit die Gruppe von Weibchen, deren Werte den Ergebnissen aus den zwei anderen Futtergruppen mit hohem Gehalt an ungesättigten Fettsäuren gegenüber gestellt wurden (= Kontrollgruppe).

Gruppe $b = n-6$ bekam eine an 6-fach ungesättigten Fettsäuren reiche Diät mit 13% Distelöl und 2% Sojabohnenöl. Dieses Spezialfutter hatte einen sehr hohen Gehalt von nahezu 11% an der Omega-6-Fettsäure Linolsäure (C 18:2 (n-6)) (Abb. 10).

Gruppe $c = n-3$ wurde ein an 3-fach ungesättigten Fettsäuren reiches Spezialfutter gefüttert, das zu 10% aus Fischöl (= EPA- Öl= reich an Eicosapentaensäure) und zu 5% aus Sojabohnenöl bestand. Die Diät enthielt die Omega-3-Fettsäuren Alpha-
Linolensäure (C 18:3 (n-3)), Arachidonsäure (C 20:4 (n-3)), Timnodonsäure (C 20:5 (n-3)), Clupanodonsäure (C 22:5 (n-3)) und Cervonsäure (C 22:6 (n-3)) (Abb. 11).

Ein wichtiger Aspekt des Experiments war, dass alle 3 Spezialdiäten isokalorisch waren, das heißt sie hatten exakt denselben Energiegehalt, nämlich 17,9 MJ/kg (ME= Metabolisierbare Energie). Würden sich also Unterschiede im Futterverbrauch bzw. in der Körpergewichtsentwicklung zeigen, so reflektierten diese Unterschiede in der Aufnahme und nicht der Energiedichte der Nahrung.

Der Futterverbrauch vor und während der Laktation wurde auf einer Präzisionswaage der Marke Ohaus® vom Typ Scout® Pro bestimmt. Dazu wurde der Futterverbrauch mittels Ein- und Auswaage der Futterpellets vom einen auf den nächsten Tag ermittelt. Vorhergehende Studien sagen aus, dass hierbei mit einem Messirritum von 1,7% ± 0,41 zu rechnen sei, falls vereinzelt Futterteile im Käfig z.B. in der Einstreu verloren gehen (JOHNSON et al., 2001a).
Abb. 9 Anteil verschiedener Fettsäuren am Gesamtfettsäuregehalt des Experimentalfutters aus Gruppe a = SFA ¹

Abb. 10 Anteil verschiedener Fettsäuren am Gesamtfettsäuregehalt des Experimentalfutters aus Gruppe b = n-6 ¹

¹ Fettsäuren mit einem Gehalt < 1% am Gesamtfettsäuregehalt wurden aus Gründen der Übersichtlichkeit bei der Benennung vernachlässigt und wurden in der Kategorie „Sonstige“ berücksichtigt.
Abb. 11 Anteil verschiedener Fettsäuren am Gesamtfettsäuregehalt des Spezialutters aus Gruppe \(c = n-3 \)²

² Fettsäuren mit einem Gehalt < 5% am Gesamtfettsäuregehalt wurden aus Gründen der Übersichtlichkeit bei der Benennung vernachlässigt und wurden in der Kategorie „Sonstige“ berücksichtigt.
Tab. 1 Detaillierte Zusammensetzung von Erhaltungs- (links) und Zuchtfutter (rechts)

<table>
<thead>
<tr>
<th></th>
<th>Erhaltungsfutter</th>
<th>Zuchtfutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohnährstoffe [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trockensubstanz</td>
<td>87,70</td>
<td>88,30</td>
</tr>
<tr>
<td>Rohprotein</td>
<td>19,00</td>
<td>23,00</td>
</tr>
<tr>
<td>Rohfett</td>
<td>3,30</td>
<td>6,00</td>
</tr>
<tr>
<td>Rohfaser</td>
<td>4,90</td>
<td>3,30</td>
</tr>
<tr>
<td>Rohasche</td>
<td>6,40</td>
<td>6,80</td>
</tr>
<tr>
<td>N-freie Extraktstoffe</td>
<td>54,10</td>
<td>49,20</td>
</tr>
<tr>
<td>Stärke</td>
<td>36,50</td>
<td>34,40</td>
</tr>
<tr>
<td>Zucker</td>
<td>4,70</td>
<td>5,20</td>
</tr>
<tr>
<td>Energie [MJ/kg]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruttoenergie (GE)</td>
<td>16,30</td>
<td>17,20</td>
</tr>
<tr>
<td>Umsetzbare Energie (ME)</td>
<td>12,80</td>
<td>14,30</td>
</tr>
<tr>
<td>Mineralstoffe [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Phosphor</td>
<td>0,70</td>
<td>0,70</td>
</tr>
<tr>
<td>Natrium</td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0,22</td>
<td>0,22</td>
</tr>
<tr>
<td>Kalium</td>
<td>0,91</td>
<td>1,02</td>
</tr>
<tr>
<td>Fettsäuren [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 14:0</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>C 16:0</td>
<td>0,47</td>
<td>0,68</td>
</tr>
<tr>
<td>C 16:1</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>C 18:0</td>
<td>0,08</td>
<td>0,22</td>
</tr>
<tr>
<td>C 18:1</td>
<td>0,62</td>
<td>0,01</td>
</tr>
<tr>
<td>C 18:2</td>
<td>1,80</td>
<td>3,21</td>
</tr>
<tr>
<td>C 18:3</td>
<td>0,23</td>
<td>0,37</td>
</tr>
<tr>
<td>C 20:0</td>
<td>0,01</td>
<td>0,03</td>
</tr>
<tr>
<td>C 20:1</td>
<td>0,02</td>
<td>1,44</td>
</tr>
<tr>
<td>C 20:5</td>
<td>keine</td>
<td>keine</td>
</tr>
<tr>
<td>C 22:6</td>
<td>keine</td>
<td>keine</td>
</tr>
</tbody>
</table>
Tab. 1 Fortsetzung

<table>
<thead>
<tr>
<th>Aminosäuren [%]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysin</td>
<td>1,00</td>
<td>1,53</td>
</tr>
<tr>
<td>Methionin</td>
<td>0,30</td>
<td>0,50</td>
</tr>
<tr>
<td>Met+Cys</td>
<td>0,65</td>
<td>0,88</td>
</tr>
<tr>
<td>Threonin</td>
<td>0,68</td>
<td>0,84</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0,25</td>
<td>0,29</td>
</tr>
<tr>
<td>Arginin</td>
<td>1,14</td>
<td>1,45</td>
</tr>
<tr>
<td>Histidin</td>
<td>0,44</td>
<td>0,55</td>
</tr>
<tr>
<td>Valin</td>
<td>0,88</td>
<td>1,07</td>
</tr>
<tr>
<td>Isoleucin</td>
<td>0,76</td>
<td>0,98</td>
</tr>
<tr>
<td>Leucin</td>
<td>1,30</td>
<td>1,69</td>
</tr>
<tr>
<td>Phenylalanin</td>
<td>0,85</td>
<td>1,06</td>
</tr>
<tr>
<td>Phe+Tyr</td>
<td>1,43</td>
<td>1,81</td>
</tr>
<tr>
<td>Glycin</td>
<td>0,80</td>
<td>0,94</td>
</tr>
<tr>
<td>Glutaminsäure</td>
<td>3,90</td>
<td>4,36</td>
</tr>
<tr>
<td>Asparaginsäure</td>
<td>1,61</td>
<td>2,18</td>
</tr>
<tr>
<td>Prolin</td>
<td>1,25</td>
<td>1,12</td>
</tr>
<tr>
<td>Alanin</td>
<td>0,79</td>
<td>1,00</td>
</tr>
<tr>
<td>Serin</td>
<td>0,89</td>
<td>1,39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamine per kg</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>15.000 IE</td>
<td>25.000 IE</td>
</tr>
<tr>
<td>Vitamin D₃</td>
<td>1.000 IE</td>
<td>1.000 IE</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>110 mg</td>
<td>135 mg</td>
</tr>
<tr>
<td>Vitamin K (als Menadion)</td>
<td>5 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>Thiamin (B₁)</td>
<td>18 mg</td>
<td>85 mg</td>
</tr>
<tr>
<td>Riboflavin (B₂)</td>
<td>23 mg</td>
<td>33 mg</td>
</tr>
<tr>
<td>Pyridoxin (B₆)</td>
<td>21 mg</td>
<td>32 mg</td>
</tr>
<tr>
<td>Cobalamin (B₁₂)</td>
<td>100 μg</td>
<td>150 μg</td>
</tr>
<tr>
<td>Nicotinsäure</td>
<td>135 mg</td>
<td>140 mg</td>
</tr>
<tr>
<td>Pantothensäure</td>
<td>43 mg</td>
<td>60 mg</td>
</tr>
<tr>
<td>Folsäure</td>
<td>7 mg</td>
<td>10 mg</td>
</tr>
<tr>
<td>Biotin</td>
<td>525 μg</td>
<td>700 μg</td>
</tr>
<tr>
<td>Cholin-Cl</td>
<td>2.990 mg</td>
<td>3.050 mg</td>
</tr>
<tr>
<td>Inositol</td>
<td>100 mg</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spurenelemente per kg</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen</td>
<td>179 mg</td>
<td>176 mg</td>
</tr>
<tr>
<td>Mangan</td>
<td>69 mg</td>
<td>60 mg</td>
</tr>
<tr>
<td>Zink</td>
<td>94 mg</td>
<td>88 mg</td>
</tr>
<tr>
<td>Kupfer</td>
<td>16 mg</td>
<td>16 mg</td>
</tr>
<tr>
<td>Iod</td>
<td>2,2 mg</td>
<td>2,2 mg</td>
</tr>
<tr>
<td>Selen</td>
<td>0,3 mg</td>
<td>0,3 mg</td>
</tr>
<tr>
<td>Cobalt</td>
<td>2,1 mg</td>
<td>2,1 mg</td>
</tr>
</tbody>
</table>
Tab. 2 Detaillierte Zusammensetzung der Spezialdiäten

<table>
<thead>
<tr>
<th>Spezialdiäten</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>20,00</td>
<td>20,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Corn starch, pre- gelatinized</td>
<td>25,00</td>
<td>25,00</td>
<td>25,00</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>11,43</td>
<td>11,43</td>
<td>11,43</td>
</tr>
<tr>
<td>Sucrose</td>
<td>15,00</td>
<td>15,00</td>
<td>15,00</td>
</tr>
<tr>
<td>Cellulose powder</td>
<td>6,00</td>
<td>6,00</td>
<td>6,00</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>Mineral/ trace element premix</td>
<td>6,00</td>
<td>6,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Vitamin premix</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Choline Cl</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>BHT (1)</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Ascorbic acid (2)</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Beef tallow (premier jus)</td>
<td>10,00</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Palm oil</td>
<td>3,00</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Olive oil</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Safflower oil</td>
<td>——</td>
<td>13,00</td>
<td>——</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>EPA oil</td>
<td>——</td>
<td>——</td>
<td>10,00</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>2,00</td>
<td>2,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Crude protein</td>
<td>17,60</td>
<td>17,60</td>
<td>17,60</td>
</tr>
<tr>
<td>Crude fat</td>
<td>15,10</td>
<td>15,10</td>
<td>15,10</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>6,00</td>
<td>6,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Crude ash</td>
<td>5,30</td>
<td>5,30</td>
<td>5,30</td>
</tr>
<tr>
<td>Starch</td>
<td>24,60</td>
<td>24,60</td>
<td>24,60</td>
</tr>
<tr>
<td>Sugar</td>
<td>16,00</td>
<td>16,00</td>
<td>16,00</td>
</tr>
<tr>
<td>N free extracts</td>
<td>53,40</td>
<td>53,40</td>
<td>53,40</td>
</tr>
<tr>
<td>Fatty acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>0,41</td>
<td>0,01</td>
<td>0,71</td>
</tr>
<tr>
<td>C16:0</td>
<td>4,00</td>
<td>1,08</td>
<td>2,35</td>
</tr>
<tr>
<td>C18:0</td>
<td>2,11</td>
<td>0,39</td>
<td>0,55</td>
</tr>
<tr>
<td>C20:0</td>
<td>0,03</td>
<td>0,07</td>
<td>0,04</td>
</tr>
<tr>
<td>C16:1</td>
<td>0,44</td>
<td>——</td>
<td>0,84</td>
</tr>
<tr>
<td>C18:1</td>
<td>5,28</td>
<td>1,88</td>
<td>2,70</td>
</tr>
<tr>
<td>C20:1</td>
<td>0,02</td>
<td>0,07</td>
<td>0,30</td>
</tr>
<tr>
<td>C18:2</td>
<td>1,64</td>
<td>10,82</td>
<td>2,79</td>
</tr>
<tr>
<td>C18:3</td>
<td>0,18</td>
<td>0,18</td>
<td>0,33</td>
</tr>
<tr>
<td>C20:4</td>
<td>0,02</td>
<td>——</td>
<td>0,07</td>
</tr>
<tr>
<td>C20:5</td>
<td>——</td>
<td>——</td>
<td>1,87</td>
</tr>
<tr>
<td>C22:5</td>
<td>——</td>
<td>——</td>
<td>0,24</td>
</tr>
<tr>
<td>C22:6</td>
<td>——</td>
<td>——</td>
<td>1,21</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>Vitamin D3</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>GE</td>
<td>20,50</td>
<td>20,50</td>
<td>20,50</td>
</tr>
<tr>
<td>ME (pig)</td>
<td>17,70</td>
<td>17,70</td>
<td>17,70</td>
</tr>
<tr>
<td>ME (Atwater)</td>
<td>17,90</td>
<td>17,90</td>
<td>17,90</td>
</tr>
<tr>
<td>kJ% Protein</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>kJ% Fat</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>kJ% Carbohydrates</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>
2.4 Körpergewichtsbestimmung

Das Körpergewicht aller MF1-Mäuse wurde ab Beginn des Versuches täglich zur selben Tageszeit, vormittags zwischen 9.00 und 11.00 Uhr, ermittelt, auch im Zeitraum vor der experimentellen Fütterung. Diese Vorgehensweise war nötig, da das Körpergewicht gewissen Schwankungen durch Verdauungsprozesse etc. unterworfen ist und die Daten dennoch vergleichbar sein sollten. Für die Messungen wurden eine Keramikschale und eine Präzisionswaage (Ohaus® Scout®Pro Series) verwendet (Abb. 12).

Abb. 12 Körpergewichtsbestimmung mit Präzisionswaage am Beispiel einer Ames Zwergmaus (diese Mäuse waren Teil einer ähnlichen Studie)
2.5 Statistik

2.6 Ethik

3. ERGEBNISSE

3.1 Körpergewicht der Weibchen außerhalb der Reproduktionsphase

Da bisher noch keine Studien über die Auswirkung der für unser Experiment gewählten Fettsäurediäten auf das Körpergewicht von Mäusen vorliegen, möchte ich zunächst die Ergebnisse der Entwicklung des Körpergewichts der MF1-Mäuse außerhalb der Phase der Reproduktion präsentieren:

Im Mittel wog eine weibliche MF1-Maus über den gesamten Messzeitraum 45,36 g ± 5,99. Unter Einbeziehung aller weiblichen Tiere innerhalb des gesamten Messzeitraums unterschied sich das Körpergewicht in den jeweiligen Futtergruppen wie folgt (Abb. 13): Das mittlere Körpergewicht der Tiere in Gruppe a (= SFA) betrug 47,17 g ± 6,10, in Gruppe b (= n-6) 45,05 g ± 5,31 und in Gruppe c (= n-3) 43,81 g ± 6,27. Insgesamt waren also die Labormäuse der Gruppe a über den gesamten Zeitraum der Messungen am schwersten, diejenigen aus Gruppe c am leichtesten. Diese Unterschiede im Körpergewicht zwischen den Gruppen waren jedoch nicht signifikant (F2, 38= 1,1; p= 0,344).

Abb. 13 Mittleres Körpergewicht (g) aller weiblichen MF1-Mäuse über den gesamten Messzeitraum in der jeweiligen Futtergruppe (Stichprobenumfang n= 43)
Im Überblick nahm die Futtergruppe a (= SFA) am meisten Gewicht zu im Vergleich zum mittleren Gewicht vor Beginn der experimentellen Fütterung (Abb. 14), gefolgt von der Gewichtszunahme in Gruppe b und c.

Vergleich man nun das mittlere Körpergewicht der Weibchen innerhalb ihrer Futtergruppe vor und während der experimentellen Fütterung (Abb. 15), so lässt sich erkennen, dass die Tiere aus Gruppe a (= SFA) vor Beginn des Experiments 43,38 g ± 3,84 wogen und danach auf im Mittel 50,71 g ± 5,74 zunahmen. Dies entspricht der höchsten Gewichtszunahme unter den drei Gruppen, nämlich 16,9% (Tab. 3). Diese Unterschiede sind statistisch signifikant (F₁, 25 = 16,53; p < 0,0005). Die Tiere aus Gruppe b (= n-6) wogen vorher 42,05 g ± 4,04 und nachher 47,84 g ± 4,90, was einer Gewichtszunahme von 13,8% entspricht. Diese Unterschiede stellten sich als signifikant dar (F₁, 27 = 12,18; p= 0,002). Die Mäuse aus Gruppe c (= n-3) hatten vor Beginn des Experiments ein mittleres Gewicht von 41,42 g ± 4,23 und danach von 45,89 g ± 7,10; dies bedeutet eine Zunahme von 10,8%. Die Gewichtsentwicklung stellte sich hierbei als knapp nicht signifikant heraus (F₁, 23 = 4,23; p= 0,051). Die Individuen in Gruppe a hatten schon vor Beginn der experimentellen Fütterung das höchste Körpergewicht, diejenigen in Gruppe b waren am zweitschwersten und in Gruppe c befanden sich die leichtesten Tiere. Absolut nahmen die Mäuse der Gruppe a im Mittel 7,33 g zu, die der Gruppe b 5,8 g und diejenigen aus Gruppe c 4,5 g (Tab. 3).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Gewichtszunahme (g)</th>
<th>Gewichtszunahme (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>7,32830</td>
<td>16,89276</td>
</tr>
<tr>
<td>b</td>
<td>5,79490</td>
<td>13,78127</td>
</tr>
<tr>
<td>c</td>
<td>4,47450</td>
<td>10,80346</td>
</tr>
</tbody>
</table>

Tab. 3 Gewichtszunahme der Weibchen im Laufe des Experiments absolut (g) und relativ (%)
Abb. 14 Mittleres Körpergewicht (g) der Weibchen innerhalb der Futtergruppe während des Experiments im Vergleich zum Gesamtmittel vor Beginn (Stichprobenumfang vor Beginn n= 41, während Experiment n= 45)

Abb. 15 Mittleres Körpergewicht (g) der Weibchen in der jeweiligen Futtergruppe vor Beginn und während des Experiments (Stichprobenumfang vor Beginn n= 41, während Experiment n= 45)
3.2 Körpergewicht während Trächtigkeit und Laktation

Von 15 verpaarten Weibchen wurden neun trächtig; dies wurde anhand deutlicher Gewichtszunahme im Vergleich zu nicht verpaarten Weibchen festgestellt. In Gruppe a gab es drei trächtige Weibchen, in Gruppe b gab es fünf und in Gruppe c ein trächtiges Weibchen. Vor der Trächtigkeit wogen diese Weibchen im Mittel 45,15 g ± 4,22; von diesem Wert ausgehend nahm das Gewicht während der Trächtigkeit in Gruppe a auf 54,84 g ± 3,80 zu, in Gruppe b auf 50,71 g ± 5,24 und in Gruppe c auf 47,31 g ± 5,30 (Abb. 16).

Da zwei Würfe innerhalb der Gruppe b zur Welt kamen und aufgezogen wurden, präsentiere ich bezüglich der Phase der Laktation nur die Ergebnisse der Gruppe b (= n-6):

Verglich man innerhalb dieser Gruppe das Körpergewicht der beiden Muttertiere vor und während der Laktation zeigte sich eine mittlere Gewichtszunahme von 44,37 g ± 4,30 auf 46,32 g ± 3,55 (Abb. 17). Abb. 18 zeigt eindrucksvoll die Gewichtsentwicklung der beiden einzigen Muttertiere aus Futtergruppe b über den gesamten Messzeitraum: Nach Beginn des Experiments (Tag der Laktation -51 = day of lactation -51 = DOL -51) nahmen die Muttertiere bis zum Zeitpunkt der Verpaarung (DOL -17) im Mittel 4,70 g ± 0,42 pro Tier zu. Eine deutliche Gewichtszunahme zeigte sich dann in der Trächtigkeit bis zum Zeitpunkt der Geburt (DOL 0), bis zu dem die Mütter im Mittel 14,45 g ± 2,33 pro Tier zunahmen. Durch das Werfen zum Zeitpunkt der Geburt (DOL 0) erfolgte ein kurzer Gewichtseinbruch gemäß dem Wurfgewicht, nach welchem dann im Zeitraum der Laktationstage zwei bis 14 (DOL 2-14) eine konstante Gewichtszunahme von mittleren 6,6 g ± 1,84 pro Tier zu verzeichnen war. Ab diesem Zeitpunkt schien das Maximum der Gewichtszunahme erreicht zu sein und im weiteren Zeitverlauf bis zur Entwöhnung (DOL 14-19) folgte ein stetiger Gewichtsverlust von im Mittel 3,55 g ± 0,07 pro Tier.
Abb. 16 Mittleres Körpergewicht (g) der Muttertiere im gesamten Messzeitraum vor und während der Trächtigkeit in den Futtergruppen a, b und c (Stichprobenumfang n= 9)

Abb. 17 Mittleres Körpergewicht (g) der Muttertiere in Futtergruppe b (= n-6) vor und während der Laktation (Stichprobenumfang n= 2)
Abb. 18 Körpergewicht (g) der beiden Muttertiere aus Gruppe b im Verlauf des gesamten Messzeitraumes
3.3 Gewichtsentwicklung der Jungtiere während der Laktation

Es gab insgesamt zwei Würfe innerhalb der Futtergruppe b (= n-6), deren mittleres Wurfgewicht pro Nachkomme insgesamt 13,95 g ± 3,03 betrug. Bezogen auf das mittlere Wurfgewicht pro Nachkomme im jeweiligen Wurf, zeigten sich geringgradige Unterschiede: Das Gewicht im Wurf mit den drei Jungtieren war mit im Mittel 14,26 g ± 3,35 pro Jungtier höher als im Wurf mit den sieben Jungtieren (13,64 g ± 2,84 pro Jungtier) (Abb. 19). Das mittlere Wurfgewicht pro Wurf stieg von 47,5 g± 27,6 (DOL 10) auf 86 g ± 45,25 (DOL 19). Im Zeitraum zwischen Tag 10 und Tag 19 der Laktation (DOL 10-19) zeigten die Würfe eine Gewichtszunahme von mittleren 38,50 g ± 17,70 pro Wurf (Abb. 20). Die Gewichtszunahme erfolgte in beiden Würfen gleichmäßig (Abb. 21) und die tägliche Wachstumsrate betrug im Mittel 1,14 g ± 0,14/ Tag/ Jungtier, wobei der tägliche Zuwachs im Wurf mit weniger Jungtieren (n= 3) mit mittleren 1,24 g± 0,75/ Tag/ Jungtier etwas größer war als in dem Wurf mit mehr Nachkommen (n= 7) (1,04 g ±0,70/ Tag/ Jungtier).

![Abb. 19 Mittleres Wurfgewicht (g) der Jungtiere innerhalb Futtergruppe b (= n-6)](image-url)
Abb. 20 Entwicklung des Wurfgewichts (g) pro Wurf im Zeitraum der Laktationstage (DOL) 10 bis 19

Abb. 21 Entwicklung des Wurfgewichts (g) pro Nachkomme im Zeitraum der Laktationstage (DOL) 10 bis 19
3.4 Futterverbrauch und Energieaufnahme nicht reproduzierender Weibchen

Um die Energieaufnahme bzw. den Futterverbrauch laktierender Tiere direkt vergleichen zu können, wird dieser zunächst anhand der nicht reproduzierenden Weibchen dargestellt:

Der Futterverbrauch der nicht laktierenden Mäuse aus Gruppe a (= SFA) betrug im Mittel 5 g ± 1,56/ Tag/ Maus entsprechend einem Energieverbrauch von 89,5 kJ/ Tag/ Maus. Tiere aus Gruppe b (= n-6) verbrauchten im Schnitt 4,63 g ± 1,24/ Tag/ Maus entsprechend einem Energieverbrauch von 82,79 kJ/ Tag/ Maus und aus Gruppe c (= n-3) 4,75 g ± 1,06/ Tag/ Maus entsprechend einem Energieverbrauch von 85,03 kJ/ Tag/ Maus (Abb. 22, Abb. 23). Unter den nicht laktierenden Tieren waren also sowohl der Futterverbrauch als auch der daraus resultierende Energieverbrauch in der Gruppe a (= SFA) am höchsten.

Abb. 22 Mittlerer Futterverbrauch (g) pro Tag und Maus innerhalb der jeweiligen Futtergruppe (ermittelt im Zeitraum von 4 Tagen während des Experiments, Stichprobenumfang n= 9)
Abb. 23 Mittlerer Energieverbrauch (kJ) pro Tag und Maus innerhalb der jeweiligen Futtergruppe (ermittelt im Zeitraum von 4 Tagen während des Experiments, Stichprobenumfang n= 9)
3.5 Futterverbrauch und Energieaufnahme während der Laktation

Verglich man den Futterverbrauch der nicht laktierenden Weibchen der Futtergruppe b (= n-6) mit den Werten der beiden Muttertiere während der Laktation (bestimmt an den Laktationstagen 13-14), ergab sich ein kontrastreiches Bild (Abb. 24, Abb. 25): Die laktierenden Muttertiere nahmen im Mittel 17 g ± 4,24 Futter/ Tag/ Maus auf (DOL13-14), was einem mittleren Energieverbrauch von 304,3 kJ/ Tag/ Maus entspricht; die nicht laktierenden Weibchen nahmen 4,63 g ± 1,24 Futter/ Tag/ Maus auf entsprechend einem Energieverbrauch von 82,79 kJ/ Tag/ Maus (siehe oben). Der Futterverbrauch während der Laktation innerhalb der Futtergruppe b war also nahezu viermal so hoch wie der der nicht laktierenden Tiere.

Abb. 24 Mittlerer Futterverbrauch (g) pro Tag und Tier vergleichend zwischen laktierenden Muttertieren (rechts) und nicht laktierenden Weibchen (links) innerhalb der Futtergruppe b (= n-6) (Stichprobenumfang n= jeweils 2)
Abb. 25 Mittlerer Energieverbrauch (kJ) pro Tag und Tier vergleichend zwischen laktierenden Muttertieren (rechts) und nicht laktierenden Weibchen (links) innerhalb der Futtergruppe b (= n-6) (Stichprobenumfang n= jeweils 2)
3.6 Körpertemperatur der Weibchen außerhalb der Reproduktionsphase

Es stellte sich zunächst die Frage, inwiefern sich die mittels subkutanem Chip ermittelte Körpertemperatur von der rektalen unterscheidet: Durch mehrere gleichzeitig erfolgte Vergleichsmessungen der subkutanen (anhand des Chips) und der rektalen Körpertemperatur (anhand Digitalthermometers) an verschiedenen Mäusen stellte sich heraus, dass die rektale Körpertemperatur im Mittel um 0,8 °C höher war als die subkutan ermittelte (Abb. 26). Diese Differenz müsste korrekterweise zu den Ergebniswerten addiert werden bzw. gibt einen Eindruck des Unterschieds zwischen den von uns ermittelten Temperaturen und der Körperkerntemperatur.

Der Tageszeitpunkt der Messungen war stets der gleiche, um Einflüsse tageszeitabhängiger physiologischer Schwankungen zu minimieren (siehe 2.2 Körpertemperaturmessung mittels LifeChip®): Die Körpertemperatur zeigte sich in unseren Kontrollmessungen nachmittags mit mittleren 36,23 °C ± 0,35 niedriger als am Vormittag mit mittleren 36,48 °C ± 0,42 (Abb. 27).

Im Überblick wiesen die Messwerte für die Körpertemperatur zwischen den Futtergruppen keine nennenswerten Unterschiede auf (Abb. 28, Abb. 29, Tab. 4). Die mittels subkutanem Life Chip® ermittelte Körpertemperatur zeigte sich zwischen den drei Futtergruppen über den gesamten Messzeitraum wie folgt: Gruppe a (= SFA) hatte eine mittlere Temperatur von 36,19 °C ± 0,46, Gruppe b (= n-6) maß im Mittel 36,24 °C ± 0,42 und Gruppe c (= n-3) 36,11 °C ± 0,6 (Abb. 28). Diese Temperaturunterschiede zwischen den Futtergruppen zeigten sich als statistisch nicht signifikant (F2, 39 = 2,36; p= 0,107). Innerhalb der einzelnen Futtergruppen änderte sich die Körpertemperatur vor Beginn im Vergleich zu während der experimentellen Fütterung dahingehend, dass die Temperatur in Gruppe a von 36,196 °C ± 0,5 auf 36,187 °C ± 0,43 sank, in Gruppe b stieg sie von 36,13 °C ± 0,38 auf 36,33 °C ± 0,44 und in Gruppe c war ebenfalls ein Anstieg von 36,02 °C ± 0,57 auf 36,19 °C ± 0,6 zu verzeichnen (Abb. 30). Jedoch war keiner dieser
Temperaturunterschiede innerhalb der Futtergruppe signifikant (Gruppe a: \(F_{1,26} = 0,002; p= 0,961 \); Gruppe b: \(F_{1,27} = 1,64; p= 0,212 \); Gruppe c: \(F_{1,26} = 0,63; p= 0,435 \)).

Abb. 26 Vergleich rektaler und mittels Life Chip® ermittelter subkutaner Temperatur

Abb. 27 Körpertemperaturwerte (°C), gemessen vormittags um 10.00 Uhr (blaue Linie) und nachmittags um 16.00 Uhr (rote Linie)
Abb. 28 Vergleich der mittleren Körpertemperatur (°C) aller MF1-Mäuse über den gesamten Messzeitraum zwischen den Futtergruppen (Stichprobenumfang n= 43)

<table>
<thead>
<tr>
<th>Futtergruppe</th>
<th>Temperaturanstieg/ -abfall °C / °C</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0,0086</td>
<td>-0,02375986</td>
</tr>
<tr>
<td>b</td>
<td>0,1958</td>
<td>0,54187342</td>
</tr>
<tr>
<td>c</td>
<td>0,1739</td>
<td>0,48281415</td>
</tr>
</tbody>
</table>

Tab. 4 Temperaturanstieg der Weibchen während des Experiments absolut (°C) und relativ (%)
Abb. 29 Mittlere Körpertemperatur (°C) der Weibchen innerhalb der Futtergruppe während des Experiments im Vergleich zum Gesamtmittel vor Beginn des Experiments (Stichprobenumfang vor Beginn des Experiments n= 41, während Experiment n= 45)
Abb. 30 Mittlere Körpertemperatur (°C) der Weibchen in der jeweiligen Futtergruppe vor- und während des Experiments (Stichprobenumfang vor Beginn des Experiments n= 41, während Experiment n=45)
3.7 Körpertemperatur während Verpaarung, Trächtigkeit und Laktation

Während der Verpaarung zeigte sich ein deutlicher Anstieg der Körpertemperatur von 36,13 °C ± 0,60 auf 36,40 °C ± 0,34 (Abb. 31). Innerhalb der Futtergruppen stieg die mittlere Temperatur in Gruppe a (= SFA) auf 36,36 °C ± 0,50, in Gruppe b (= n-6) ebenfalls auf 36,36 °C ± 0,18 und in Gruppe c (= n-3) auf 36,4 °C ± 0,33 (Abb. 32). Diese Unterschiede in der Körpertemperatur zwischen den Gruppen zum Zeitpunkt der Verpaarung waren statistisch nicht signifikant (F2, 14= 0,02; p= 0,980).

Während der Trächtigkeit erfolgte erneut ein Temperaturanstieg (10 bzw. 14 Tage vor der Geburt) von mittleren 35,99 °C ± 0,55 auf 36,34 °C ± 0,42 (Abb. 33). Innerhalb der Futtergruppen stieg die mittlere Temperatur in Gruppe a (= SFA) auf 36,61 °C± 0,31, in Gruppe b (= n-6) auf 36,15 °C± 0,38 und in Gruppe c (= n-3) auf 36,48 °C± 0,45 (Abb. 34).

Innerhalb der Futtergruppe b (= n-6) stellten sich die Werte für die Körpertemperatur im Vergleich laktierender Muttermütter zu nicht laktierenden Weibchen wie folgt dar: Nicht laktierende Weibchen hatten mit mittleren 36,40 °C ± 0,80 eine niedrigere Temperatur als die laktierenden Mütter mit 36,47 °C ± 0,57 (Abb. 35). Dieser Anstieg der Temperatur zeigte sich noch deutlicher, wenn man die Körpertemperatur der beiden Muttermütter aus Gruppe b vor und während der Laktation verglich: Die mittlere Temperatur stieg von 35,76 °C ± 0,55 auf 36,47 °C ± 0,57 (Abb. 36). Der Verlauf der Körpertemperatur während der Laktationstage (day of lactation= DOL) 0-19 ist in Abb. 37 dargestellt, hier zeigt sich ein deutlicher Temperaturanstieg beider Muttermütter bis zum Zeitpunkt des Absetzens (DOL 19). Abb. 38 zeigt die Körpertemperatur der beiden Mütter über den gesamten Messzeitraum, wobei sich an drei markanten Punkten wichtige Änderungen im Temperaturverlauf feststellen lassen: DOL -17 zeigt einen vorübergehenden Temperaturanstieg, der mit den Tagen der Verpaarung zusammenfällt. Um den Zeitpunkt der Geburt (DOL 0) fällt die Temperatur kurz ab, um dann im weiteren Verlauf während der Laktation (DOL 1-19)
bis zum Zeitpunkt der Entwöhnung (DOL 19) konstant zu steigen. Nach dem Absetzen sinken die Werte wieder relativ schnell auf ein basales Niveau ab.

Abb. 31 Körpertemperatur (°C) der verpaarten Weibchen im Zeitraum vor und während der Verpaarung (Stichprobenumfang n= 15)

Abb. 32 Körpertemperatur (°C) der Weibchen vor und während der Verpaarung innerhalb der Futtergruppen a, b und c (Stichprobenumfang n= 15)
Abb. 33 Körpertemperatur (°C) der trächtigen Weibchen vor und während der Trächtigkeit (Stichprobenumfang n= 9)

Abb. 34 Körpertemperatur (°C) der Weibchen vor und während der Trächtigkeit innerhalb der Futtergruppen a, b, c (Stichprobenumfang n= 9)
Abb. 35 Mittlere Körpertemperatur (°C) innerhalb der Futtergruppe b (= n-6) im Vergleich nicht laktierende zu laktierenden Tieren während der Laktation (DOL 0-19) (Stichprobenumfang nicht laktierend n= 12, laktierend n= 2)

Abb. 36 Mittlere Körpertemperatur (°C) der Muttertiere in Futtergruppe b (= n-6) vor und während der Laktation (Stichprobenumfang n= 2)
Abb. 37 Verlauf der Körpertemperatur (°C) der Muttertiere während der Laktation (DOL 0-19)
Abb. 38 Körpertemperatur (°C) der beiden Muttertiere aus Gruppe b (= n-6) im Verlauf des gesamten Messzeitraumes
4. DISKUSSION

4.1 Körpergewicht der Weibchen außerhalb der Reproduktionsphase

Im Zeitraum vor Beginn des Experiments betrug das mittlere Körpergewicht einer nicht laktierenden weiblichen MF1-Maus 42,30 g ± 4,02; dieser Wert liegt geringfügig oberhalb der Gewichtsangabe von 30-40 g, die in bisherigen Studien durchschnittlich für nicht reproduzierende Weibchen angeführt wurde (JOHNSON et al., 2001a; KROL, 2003; GAMO, TROUP, et al., 2013a). Während des Experiments zeigten sich bei einer Gewichtszunahme von 16,9% die Tiere aus Futtergruppe a (= SFA) am schwersten, gefolgt von Futtergruppe b (= n-6) und Futtergruppe c (= n-3); die gruppenübergreifende Gewichtszunahme über die Zeit lässt sich vereinbaren mit der Überlegung, dass kleine Säugetiere so viel Nahrung aufnehmen, wie ihnen angeboten wird; überschüssige Energie wird in Form von Fettdepots gespeichert (MERCER & SPEAKMAN, 2001). Außerdem spielen spezielle olfaktorische Reize eine Rolle bei der Aufnahme von fetthaltiger Nahrung (CARTONI et al., 2010), die zu erhöhter Futteraufnahme führen können. Solche olfaktorischen Reize könnten zur erhöhten Gewichtszunahme in der SFA-Gruppe geführt haben. Eine weitere Rolle könnte auch die Umgebungstemperatur (ambient temperature= T_a) der Tiere gespielt haben, die die Futteraufnahme und somit indirekt die Gewichtszunahme beeinflusst haben könnte: Nagetiere tendieren dazu, bei höherer T_a vermehrt Futter, dessen Gehalt an gesättigten Fettsäuren hoch ist, zu fressen, umgekehrt bevorzugen sie bei niedriger T_a vermehrt PUFA-reiche Diäten (HIEBERT et al., 2000). Obwohl die Mäuse der SFA-Gruppe nicht zwischen PUFA- und SFA-Futter wählen konnten, könnte die vorherrschende T_a von ca. 22 °C zu bevorzugter Aufnahme des SFA-Futters und einer somit erhöhten Futteraufnahme geführt haben.
4.2 Körpergewicht während Trächtigkeit und Laktation

Das Körpergewicht der beiden Muttertiere aus Futtergruppe b (= n-6) erhöhte sich während der Laktation bis zum 14. Tag der Laktation, dies lässt sich durch physiologische Anpassungsvorgänge wie z.B. die Erhöhung der Stoffwechselrate und eine vermehrte Futteraufnahme sowie verminderte Aktivität erklären und deckt sich weitgehend mit Erkenntnissen bisheriger Daten (JOHNSON et al., 2001a; JOHNSON et al., 2001b; DUAH et al., 2013; VAANHOLT et al., 2013). In einer dieser Studien (JOHNSON et al., 2001a) zeigte sich eine Gewichtszunahme der Muttertiere nach der Geburt bis zum 11. Tag der Laktation, gefolgt von einem Gewichtsabfall nach Tag 12 der Laktation. Die Ergebnisse meiner Arbeit zeigten zwar auch eine Zunahme nach der Geburt ausgehend von einem mittleren Körpergewicht von 42,80 g ± 2,12 pro Muttertier (DOL 2), jedoch bis zum 14. Tag der Laktation, an dem die Mütter mittlere 49,40 g ± 4,0 wogen. In der gleichen Studie von JOHNSON et al. wird von einem Gewichtsabfall ab Tag 12 der Laktation berichtet, dieser fand in unseren Daten erst ab Tag 15 der Laktation statt, nach dem die Muttertiere ein mittleres Körpergewicht von 45,65 g ± 3,80 (DOL 17) hatten. Das Muster mit Gewichtszunahme und anschließender -abnahme während der Laktationsphase scheint also im vorliegenden Experiment gleichermaßen erfolgt zu sein, aber zu einem späteren Zeitpunkt der Laktation. Das Maximum einer damit verbundenen Futter-/Energieaufnahme (und daraus erfolgter Gewichtszunahme) scheint sich zunächst um drei Tage verlängert zu haben durch Fütterung mit einer an n-6-mehrfach ungesättigten Fettsäuren reichen Diät gegenüber herkömmlichem Nagetierfutter, wie es in anderen Studien verwendet wurde. Weitere Studien an laktierenden MF1-Mäusen zeigen aber, dass es durchaus zu einer Gewichtszunahme bis zum Tag 14 der Laktation kommen kann (JOHNSON et al., 2001b).
4.3 Gewichtsentwicklung der Jungtiere während der Laktation

Das Wurfgewicht pro Nachkomme war in dem Wurf mit der geringeren Anzahl Wurfgeschwister (n= 3) nur minimal höher und unterschied sich um nur 0,31 g vom Mittelwert; ein Jungtier wog im Mittel 13,95 g ± 3,03. Die Werte für das mittlere Gesamtwurfgewicht waren vergleichbar mit denjenigen aus anderen Studien (JOHNSON et al., 2001a; GAMO, TROUP, et al., 2013a), zu beachten war jedoch die in dieser Arbeit vorliegende geringe Anzahl der Würfe (n= 2). Das mittlere Wurfgewicht in diesem Experiment lag zum Zeitpunkt der Entwöhnung (DOL 19) bei 86 g ± 45,25 im Vergleich zu 86,70 g ± 1,41 (JOHNSON et al., 2001a). Den n-3- und n-6-mehrfach ungesättigten Fettsäuren wird ein positiver Einfluss auf Trächtigkeitsdauer, Geburtsgewicht, Wachstum und kognitive Entwicklung beim Menschen nachgesagt (MARTINEZ, 1992), dieser scheint sich jedoch nicht zwischen n-3- und n-6-Fettsäuren zu unterscheiden (HELLAND et al., 2001). Ob die n-6-Fettsäuren reiche Diät in unserem Experiment positive Effekte auf die Gewichtsentwicklung der Jungtiere zeigte, bleibt zunächst offen, da Würfe aus den beiden anderen Experimentalgruppen leider ausblieben und das Gesamtwurfgewicht sich nicht von Werten für Wurfgewichte aus vergleichbaren Studien (JOHNSON et al., 2001a) unterschied.

4.4 Futterverbrauch und Energieaufnahme nicht reproduzierender Weibchen

Der Futterverbrauch der nicht reproduzierenden Weibchen zwischen den drei Futtergruppen variierte nur gering und betrug im Schnitt 4,8 g ± 0,2/ Tag/ Maus (entsprechend 85,8 KJ/ Tag). Dies bedeutete bezüglich der verbrauchten Futtermenge zwar, dass er geringer ausfiel als in Studien an der MF1-Maus: darin verbrauchten die Mäuse 5,2 g ± 0,09 pro Tag (JOHNSON et al., 2001a). Bezüglich
der im Futter enthaltenen Energie jedoch, nahmen die Mäuse in unserem Experiment weitaus mehr auf als in vorliegenden Studien: die Mäuse verbrauchten außerhalb der Reproduktionsphase 69,9 kJ/Tag (GAMO, BERNARD, et al., 2013) im Gegensatz zu den hier ermittelten 85,8 kJ/Tag. Gruppe a (= SFA), in der auch das Körpergewicht der nicht reproduzierenden Weibchen am höchsten war (siehe oben), zeigte parallel dazu auch den größten Futterverbrauch von mittleren 5 g ±1,56/Tag/Maus. Diese Ergebnisse lassen vermuten, dass ein Ungleichgewicht zwischen Energiedichte und Futterverbrauch herrschte, die Tiere also durch nahezu unverändertes Fressverhalten schon außerhalb der Phase der Reproduktion weitaus mehr Energie in Form von Futter aufnahmen, als sie verbrauchten und somit schnell viel Gewicht zunahmen. Dieses Missverhältnis zwischen Energieaufnahme und -verbrauch resultiert aus dem Verhalten (Fressverhalten und körperlich aktiv genutzte Zeit) sowie der Physiologie (Ruheumsatz und Energieverbrauch bei Aktivität) und wird als Ursache für Fettleibigkeit (= Adipositas) angesehen (SPEAKMAN, 2004). Möglicherweise lag hierin der Grund dafür, dass kein Weibchen der SFA- bzw. der n-3-Gruppe erfolgreich Jungtiere aufzog.

4.5 Futterverbrauch und Energieaufnahme während der Laktation

Laktierende Mütter aus der Futtergruppe b erhöhten ihren Futterverbrauch (304,3 kJ/Tag) im Vergleich zu nicht reproduzierenden Weibchen (82,8 kJ/Tag) auf 368 % der durchschnittlichen Energieaufnahme, um den Anforderungen der Laktationsphase, also den säugenden Jungtieren, gerecht zu werden. Dieses Ergebnis war bezüglich der Steigerung der Energieaufnahme von vor zu während der Laktation mit einer aktuellen Studie vereinbar: In dieser lag der mittlere Energieverbrauch der nicht reproduzierenden Mäuse mit 71,1 kJ/Tag im Gegensatz zu mittleren 270,3 kJ/Tag (DOL 13-17) bei den laktierenden Mäusen, was einer Erhöhung von etwa 380 % entspricht (GAMO, TROUP, et al., 2013b). Diese vergleichenden Ergebnisse lassen
daher vermuten, dass n-6-gesättigte Fettsäuren zunächst keinen Einfluss auf die Futter- bzw. Energieaufnahme während der Laktation besitzen.

4.6 Körpertemperatur der Weibchen außerhalb der Reproduktionsphase

Die mittlere Körpertemperatur der nicht reproduzierenden Weibchen in allen Futtergruppen hatte sich im Vergleich zum Mittelwert vor Beginn des Experiments zwar minimal erhöht, es zeigte sich aber diesbezüglich keine statistische Signifikanz. Da die Weibchen alle über den gesamten Zeiträum signifikant an Körpergewicht zunahmen, ist es möglich, dass diese geringfügige Temperaturzunahme allein durch einen erhöhten Ruheumsatz (= resting metabolic rate, RMR) zustande kam (SELMAN et al., 2001). Der Mittelwert der Körpertemperatur vor Beginn des Experiments lag bei 36,12 °C ± 0,48; dies entspricht in etwa dem Basiswert einer MF1-Maus (ca. 37,3 °C bei mittlerer Aktivität), wenn man die Temperaturdifferenz von 0,8 °C des subkutanen Chips addiert (GAMO, TROUP, et al., 2013a; GAMO, BERNARD, et al., 2013). Während der experimentellen Fütterung stieg die Körpertemperatur innerhalb der Futtergruppen b (= n-6) und c (= n-3) jeweils um ca. 0,2 °C an, in Gruppe a (= SFA) fiel sie um ca. 0,009 °C. Diese Erhöhungen bzw. Absenkungen zeigten sich jedoch als nicht signifikant (Gruppe a: F_{1,26} = 0,002; p= 0,961; Gruppe b: F_{1,27} = 1,64; p= 0,212; Gruppe c: F_{1,26} = 0,63; p= 0,435) und können daher vernachlässigt werden. Die Ergebnisse widerlegen die Hypothesen dieser Arbeit bezogen auf die nicht reproduzierenden Tiere: Weder dass hierbei die n-3-Gruppe eine Sonderstellung einnahm, noch dass die n-3-Gruppe signifikant geringere Temperaturwerte als die n-6-Gruppe aufwies, noch dass die n-6-Gruppe höhere Werte als die SFA- und n-3-Gruppe zeigte. Da die Temperaturunterschiede jedoch in der jeweiligen Futtergruppe zumindest in der vorliegenden Arbeit sehr gering waren, hätte ich den Versuch wiederholen müssen, damit Zufallswerten eine
geringere Bedeutung zugekommen wäre und sich somit ein eventuell bestehender Temperaturunterschied als signifikant herausgestellt hätte.

4.7 Körpertemperatur während Verpaarung, Trächtigkeit und Laktation

Schon während dem Zeitpunkt der Verpaarung zeigte sich über alle drei Futtergruppen ein mittlerer Temperaturanstieg von 0,27 °C, der abhängig gewesen sein könnte vom gesteigerten Aktivitätsniveau der Weibchen; Temperaturanstiege zum Zeitpunkt der Verpaarung wurden bereits in anderen Studien gezeigt (GAMO, BERNARD, et al., 2013). Eine weitere Erhöhung der Temperaturwerte um ca. 0,35 °C während der Trächtigkeit fand in allen Futtergruppen statt; diese Werte überstiegen die mittlere Temperatur während der Verpaarung (36,4 °C), aber nur in den Gruppen a (= SFA) und c (= n-3). Verglichen mit anderen Studien verhielten sich die Temperaturwerte während der Trächtigkeit, die sich in diesem Experiment vor allem in den Futtergruppen a und c als geringfügig erhöht darstellten, gegensätzlich zum sonst üblichen Temperaturabfall während dieses Zeitraumes (GAMO, TROUP, et al., 2013b). Dies könnte ein weiterer Hinweis darauf sein, dass die Tiere massiv Übergewicht entwickelten und daher gesteigerte Stoffwechselraten zeigten, die zu einer Erhöhung der Körpertemperatur führten. Während der Laktationsphase, in der es mangels erfolgreichen Würfen keine Vergleichsdaten aus den Futtergruppen a (= SFA) und c (= n-3) gab, kam es in Futtergruppe b (= n-6) erneut zu einem Spitzenwert der Körpertemperatur von durchschnittlichen 37,5 °C am 17. Tag der Laktation, der an dieser Stelle (DOL 13-17) ein Plateau erreichte, das sich laut Studien mit dem Plateau der maximalen Energieaufnahme deckt. In einer der ersten Grundlagenstudien zur Laktation der MF1-Maus wurde eine Steigerung der Futteraufnahme innerhalb der ersten 13 Tage der Laktation festgestellt, danach blieb die Futteraufnahme an den Tagen 13 bis 16 stabil auf einem hohen Wert. Die durchschnittliche Futteraufnahme innerhalb dieser vier Tage wurde aufgrund ihrer
grafischen Optik „asymptotische tägliche Futteraufnahme“ genannt (JOHNSON et al., 2001a). Die Tatsache, dass die Körpertemperatur im vorliegenden Experiment genau während dieser Plateauphase ihr Maximum erreichte, bekräftigt die HDL-Hypothese bzw. lässt sich durch diese erklären (KRÓL et al., 2007; SPEAKMAN & KRÓL, 2010). Die maximalen Temperaturwerte während dieser Phase zeigten aber keinen direkten Einfluss einer Fütterung mit n-6-PUFAs, da eine weitere Erhöhung über Normwerte von laktierenden MF1-Weibchen nicht stattfand.

4.8 Aspekte der Jungtierentwicklung

Dass während des Experiments in nur einer von drei Futtergruppen zwei Würfe aufgezogen werden konnten, war überraschend, da es bisher bei Forschungsarbeiten an der MF1-Maus nicht zu Problemen in Form von Reproduktionsstörungen kam. In einem weiteren auf diese Arbeit folgenden ähnlichen Experiment an MF1-Mäusen, die in zeitlich kürzerem Abstand nach Beginn der experimentellen Fütterung (es wurden dabei exakt die gleichen experimentellen Futtersorten verwendet) verpaart wurden, konnten erfolgreich Würfe in allen Futtergruppen produziert werden. Im Folgenden werden Überlegungen präsentiert, welche Umstände dazu geführt haben könnten, dass die Reproduktion der Würfe im vorliegenden Experiment nicht naturgemäß ablaufen konnte:

Haben PUFAs einen Einfluss auf die Fruchtbarkeit?

PUFAs haben über mehrere Wege die Möglichkeit, die Zusammensetzung von Säugetiergeweben zu verändern, z.B. über die Prostaglandinsynthese, Transkriptionsfaktoren oder die Steroidogenese (ABAYASEKARA & WATHES, 1999;
WATHES et al., 2007). Bisherige Studien zeigten, dass Oozyten zwar ein hohes Level an Fettsäuren enthalten (MCEVOY et al., 2000), dieser Gehalt sich jedoch durch Fütterung verschiedener Diäten in einem Versuch mit Milchkühen nicht beeinflussen ließ (BILBY et al., 2006). Es müssen also weiterhin die den PUFA zugesprochenen positiven Effekte auf die Reproduktion überprüft werden und vor allem gegen negative abgewogen werden (WATHES et al., 2007).

Adipositas als Ursache für Reproduktionsstörungen?

Die ad libitum (=AL) Fütterung von Labortieren kann zu einer Reihe von Problemen führen; AL gefütterte Nagetiere entwickeln früh schädliche Stoffwechselkrankheiten, hormonelle Störungen und Tumoren, die zu einer verkürzten Lebensspanne führen (BLACKWELL et al., 1995; KEENAN, 1999). Die AL-Fütterung ist mit einer zwangsläufigen massiven Gewichtszunahme verbunden (HUBERT, 2000), die wiederum zur Entwicklung von Diabetes mellitus beitragen kann (STORLIEN et al., 1991). Es wurde in der in weiteren Studien gezeigt, dass n-3-Fettsäuren negative Effekte auf diabetische Patienten haben können (BORKMAN et al., 1989; BERRY, 1997). Fettleibigkeit (Adipositas) per se kann zu Fruchtbarkeitsstörungen führen (BRAY, 1997). Da die MF-1-Mäuse in der vorliegenden Arbeit von Anfang an sehr viel an Gewicht zunahmen, liegt der Verdacht nahe, dass der möglicherweise vorgelegene adipöse Zustand die Ursache für eine niedrige Geburtenrate und die Totgeburten war. Eine durchschnittliche 40 g schwere Maus benötigt laut Formel (Metabolisierbare Energie (ME) für die Erhaltung: (kcal/ Tag) = 112 x Körpergewicht (kg) 0.75) (MAYNARD & LOOSLI, 1969) für die Erhaltung ca. 42 kJ/ Tag; im Durchschnitt nahmen nicht laktierende Weibchen in diesem Experiment jedoch 86 kJ/ Tag mit dem Futter auf. Die ME von 17,9 MJ/ kg, die in den drei Mausfuttermitteln enthalten war, liegt über dem durchschnittlich angestrebten Energiedichtewert für Zuchtfutter (ca. 14 MJ/ kg).
5. ZUSAMMENFASSUNG

6. SUMMARY

Reproduction and lactation are the most energy demanding periods for female mammals; the MF1-laboratory mouse represents a suitable model to explore in more detail any possible physiological limitation during this interesting metabolic phase. This study tested if three different isocaloric diets, that differed in their fatty acid composition would induce changes in metabolism of reproducing MF1-laboratory mice and their offspring. Therefore MF1-mice were allocated to three experimental groups: Prior to the change in food all animals received the same food, after this time one group received food rich in saturated fatty acids (SFA), the second group received food enriched in n-3-polyunsaturated fatty acids (PUFA) and the third one received a diet rich in n-6-PUFAs. The group that received the SFA food, served as a control group because it mainly aimed to investigate the influence of unsaturated fatty acids, which are known for many influential effects on physiology in mammals. In particular, it was important to determine whether any effect of the special diet might be present on the regulation of body temperature of the laboratory mice. Previous studies showed that the body temperature significantly increased during lactation. To test this hypothesis, we subcutaneously implanted transponders into 41 female MF1-mice that allow for skin temperature readings. Then, a subset of females of each group was mated; while performing the work, it was found that only two females produced healthy litters within the n-6-group. So I conclude whether the excess of certain fatty acids prevented normal fetal development of the other litters. Statistically I found significant differences in body weight gain between the feeding groups, but no differences in body temperature.
7. LITERATURVERZEICHNIS

www.destronfearing.com

www.ssniff.de

FESTING, M.F.W. & BUTLER, W., (1975): International index of laboratory animals. Giving sources and locations of animals used in laboratories throughout the world.

HUBERT, M.-F., (2000): The Effects of Diet, ad Libitum Feeding, and Moderate and Severe Dietary Restriction on Body Weight, Survival, Clinical Pathology
Parameters, and Cause of Death in Control Sprague-Dawley Rats. Toxicological Sciences, 58, 195–207.

KOOLMAN, J., (2003): Taschenatlas der Biochemie,

VALENCAK, T.G. & RUF, T., (2007): N-3 polyunsaturated fatty acids impair lifespan but have no role for metabolism. Aging cell, 6, 15–25.

8. ABBILDUNGSVERZEICHNIS

Abb. 1 Stearinsäure (18:0), Beispiel einer gesättigten Fettsäure ...2
Abb. 2 Ölsäure (18:1), Beispiel einer ungesättigten cis-Fettsäure...2
Abb. 3 Strukturformel der α-Linolensäure, links Carboxygruppe (COOH), rechts das (ω)-C-Atom. Die unterschiedlichen physiologischen (rot) und chemischen (blau) Nummerierungskonventionen sind eingezeichnet. Am Beispiel ist auch der Lipidname „18:3 (ω-3)” bzw. „18:3 (n-3)” nachvollziehbar ...3
Abb. 4 Weibliche MF1-Labormaus bei geöffnetem Käfigdeckel. Im Hintergrund sind ein rotes Maushaus bzw. Nestbaumaterialien zu sehen. ...13
Abb. 5 Unterbringung und Haltung der MF1-Mäuse. Wie auf dem Bild erkennbar, standen den Tieren Wasser und Futter ad libitum zur Verfügung.14
Abb. 6 Injektionsnadel und LifeChip® bei der Implantation ...16
Abb. 7 Platzieren des LifeChip® im Rahmen der subkutanen Implantation17
Abb. 8 Auslesen der Identifikationsnummer und der subkutanen Körpertemperatur mittels Global Pocket Reader® am Beispiel einer mit den MF1-Mäusen im gleichen Labor gehaltenen Ames Zwergmaus ..17
Abb. 9 Anteil verschiedener Fettsäuren am Gesamtfettsäuregehalt des Experimentalfutters aus Gruppe a = SFA ..20
Abb. 10 Anteil verschiedener Fettsäuren am Gesamtfettsäuregehalt des Experimentalfutters aus Gruppe b = n-6 ..20
Abb. 11 Anteil verschiedener Fettsäuren am Gesamtfettsäuregehalt des Spezialfutters aus Gruppe c = n-3 ..21
Abb. 12 Körpergewichtsbestimmung mit Präzisionswaage am Beispiel einer Ames Zwergmaus (diese Mäuse waren Teil einer ähnlichen Studie) ..25
Abb. 13 Mittleres Körpergewicht (g) aller weiblichen MF1-Mäuse über den gesamten Messzeitraum in der jeweiligen Futtergruppe (Stichprobenumfang n= 43)28
Abb. 14 Mittleres Körpergewicht (g) der Weibchen innerhalb der Futtergruppe während des Experiments im Vergleich zum Gesamtmittel vor Beginn (Stichprobenumfang vor Beginn n= 41, während Experiment n= 45)30
Abb. 15 Mittleres Körpergewicht (g) der Weibchen in der jeweiligen Futtergruppe vor Beginn und während des Experiments (Stichprobenumfang vor Beginn n= 41, während Experiment n=45) .. 30
Abb. 16 Mittleres Körpergewicht (g) der Muttermiere im gesamten Messzeitraum vor und während der Trächtigkeit in den Futtergruppen a, b und c (Stichprobenumfang n= 9) .. 32
Abb. 17 Mittleres Körpergewicht (g) der Muttermiere in Futtergruppe b (= n-6) vor und während der Laktation (Stichprobenumfang n= 2) ... 32
Abb. 18 Körpergewicht (g) der beiden Muttermiere aus Gruppe b im Verlauf des gesamten Messzeitraumes .. 33
Abb. 19 Mittleres Wurfgewicht (g) der Jungtiere innerhalb Futtergruppe b (= n-6) ... 34
Abb. 20 Entwicklung des Wurfgewichts (g) pro Wurf im Zeitraum der Laktationstage (DOL) 10 bis 19 ... 35
Abb. 21 Entwicklung des Wurfgewichts (g) pro Nachkomme im Zeitraum der Laktationstage (DOL) 10 bis 19 ... 35
Abb. 22 Mittlerer Futterverbrauch (g) pro Tag und Maus innerhalb der jeweiligen Futtergruppe (ermittelt im Zeitraum von 4 Tagen während des Experiments, Stichprobenumfang n= 9) .. 36
Abb. 23 Mittlerer Energieverbrauch (kJ) pro Tag und Maus innerhalb der jeweiligen Futtergruppe (ermittelt im Zeitraum von 4 Tagen während des Experiments, Stichprobenumfang n= 9) .. 37
Abb. 24 Mittlerer Futterverbrauch (g) pro Tag und Tier vergleichend zwischen laktierenden Muttermieren (rechts) und nicht laktierenden Weibchen (links) innerhalb der Futtergruppe b (= n-6) (Stichprobenumfang n=jeweils 2) .. 38
Abb. 25 Mittlerer Energieverbrauch (kJ) pro Tag und Tier vergleichend zwischen laktierenden Muttermieren (rechts) und nicht laktierenden Weibchen (links) innerhalb der Futtergruppe b (= n-6) (Stichprobenumfang n=jeweils 2) .. 39
Abb. 26 Vergleich rektaler und mittels Life Chip® ermittelter subkutaner Temperatur ... 41
Abb. 27 Körpertemperaturwerte (°C), gemessen vormittags um 10.00 Uhr (blaue Linie) und nachmittags um 16.00 Uhr (rote Linie) .. 41
Abb. 28 Vergleich der mittleren Körpertemperatur (°C) aller MF1-Mäuse über den gesamten Messzeitraum zwischen den Futtergruppen (Stichprobenumfang n= 43).

Abb. 29 Mittlere Körpertemperatur (°C) der Weibchen innerhalb der Futtergruppe während des Experiments im Vergleich zum Gesamtmittel vor Beginn des Experiments (Stichprobenumfang vor Beginn des Experiments n= 41, während Experiment n= 45).

Abb. 30 Mittlere Körpertemperatur (°C) der Weibchen in der jeweiligen Futtergruppe vor- und während des Experiments (Stichprobenumfang vor Beginn des Experiments n= 41, während Experiment n= 45).

Abb. 31 Körpertemperatur (°C) der verpaarten Weibchen im Zeitraum vor und während der Verpaarung (Stichprobenumfang n= 15).

Abb. 32 Körpertemperatur (°C) der Weibchen vor und während der Verpaarung innerhalb der Futtergruppen a, b und c (Stichprobenumfang n= 15).

Abb. 33 Körpertemperatur (°C) der trächtigen Weibchen vor und während der Trächtigkeit (Stichprobenumfang n= 9).

Abb. 34 Körpertemperatur (°C) der Weibchen vor und während der Trächtigkeit innerhalb der Futtergruppen a, b und c (Stichprobenumfang n= 9).

Abb. 35 Mittlere Körpertemperatur (°C) innerhalb der Futtergruppe b (= n-6) im Vergleich nicht laktierende zu laktierenden Tieren während der Laktation (DOL 0-19) (Stichprobenumfang nicht laktierend n= 12, laktierend n= 2).

Abb. 36 Mittlere Körpertemperatur (°C) der Muttermäuse in Futtergruppe b (= n-6) vor und während der Laktation (Stichprobenumfang n= 2).

Abb. 37 Verlauf der Körpertemperatur (°C) der Muttermäuse während der Laktation (DOL 0-19).

Abb. 38 Körpertemperatur (°C) der beiden Muttermäuse aus Gruppe b (= n-6) im Verlauf des gesamten Messzeitraumes.