Dem zellulären Stoffwechsel auf der Spur - Forschende enträtseln Funktion von Zellproteinen

04.03.2014 - Zellen verfügen über einen Stoffwechsel, der je nach Funktion und Bedarf verändert werden kann. Ist der zelluläre Stoffwechsel gestört, kann das zur Erkrankung des gesamten Organismus führen. Forschende der Vetmeduni Vienna fanden heraus, dass die Entkopplerproteine UCP2 und UCP4 in unterschiedliche zelluläre Stoffwechselarten involviert sind. Die Proteine geben also Auskunft über den Zustand der Zelle. Veränderungen könnten so früher erkannt werden als bisher. Die Forschungsarbeit wurde vor kurzem im Journal PLOS One veröffentlicht.

Die UCPs, auch Uncoupling Proteins oder Entkopplerproteine, kommen in Mitochondrien, den Kraftwerken jeder Körperzelle, vor. Es gibt fünf verschiedene UCPs (1-5), wobei die eindeutige Funktion bisher nur für UCP1 aufgeklärt (Link zur Studie [Link 1]) werden konnte. UCP1 ist für die Wärmeerzeugung ohne Muskelaktivität bei Babys und winterschlafenden Tieren verantwortlich. Ein Forschungsteam der Abteilung für Physiologie und Biophysik an der Vetmeduni Vienna liefert erstmals ein grundlegendes Erklärungskonzept für die Funktion von UCP2 und UCP4. Beide Proteine sind in unterschiedliche Stoffwechselarten der Zelle involviert.   

UCP2 in Stammzellen und Krebszellen

Erstautorin Anne Rupprecht zeigte bereits in früheren Studien (Link zur Studie [Link 2]) an Immunzellen, dass UCP2 in einen erhöhten Stoffwechsel involviert sein könnte. Embryonale Stammzellen besitzen genau so einen erhöhten Stoffwechsel, da sie sich rasch und fortwährend teilen, genau wie Krebszellen. Rupprecht suchte also nach verschiedenen UCPs in embryonalen Stammzellen von Mäusen und fand lediglich UCP2. „Ein sehr hoher UCP2 Gehalt zeigte sogar einen besonders stark angekurbelten Stoffwechsel an. Auch in Krebszellen wurde UCP2 in anderen Studien bereits nachgewiesen“, so Rupprecht.

UCP4 in Nervenzellen

Im Gegensatz zu UCP2 kommt UCP4 nur in Nervenzellen vor. Nervenzellen haben einen ganz anderen Metabolismus. Sie teilen sich im Gegensatz zu Stammzellen und Krebszellen kaum. Das Forschungsteam um Prof. Elena Pohl ließ deshalb embryonale Stammzellen in der Petrischale zu Nervenzellen differenzieren. Anhand dieses Modelsystems zeigten die Forschenden, dass UCP2 in den sich schnell vermehrenden  Stammzellen noch vorhanden ist, ab dem Zeitpunkt der Differenzierung jedoch durch UCP4 ersetzt wird.

„In unserer Arbeit haben wir den natürlichen Prozess der Zelldifferenzierung von Stammzellen zu Neuronen untersucht. Wir wissen, dass sich bei der Zelldifferenzierung der Stoffwechsel ändert. Dass wir in dem einen Fall UCP2 und im anderen UCP4 fanden, beweist erstmals, dass diese Proteine mit unterschiedlichen Stoffwechselarten in Zusammenhang stehen“, beschreibt Elena Pohl.

In Neuroblastomazellen, das sind bösartig veränderte Nervenzellen, fanden die Forschenden beispielsweise nur UCP2. Das für Nervenzellen übliche UCP4 war nicht auffindbar. Am Weg zur sich schnell vermehrenden Krebszelle geht UCP4 in den veränderten Nervenzellen offenbar verloren.

UCPs zur Krankheitsfrüherkennung

Die Forscherin Rupprecht beschreibt die Relevanz ihrer Arbeit so: „Die Zusammensetzung der UCPs in den Zellen gibt Auskunft darüber, in welchem Zustand sich die Zellen befinden. UCP2 könnte deshalb schon im frühen Stadium anzeigen, ob sich eine Zelle auf dem Weg zur Krebszelle befindet. Auch eine Einstufung der Bösartigkeit von Tumoren wäre eventuell möglich. Ein gestörter Mechanismus in den Nervenzellen kann zu Funktionsstörungen und so etwa zu neurodegenerativen Erkrankungen wie Parkinson führen.“  

Das paper „Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function“ von Anne Rupprecht, Dana Sittner, Alina Smorodchenko, Karolina Hilse, Justus Goyn, Rudolf Moldzio, Andrea E. M. Seiler, Anja U. Bräuer und Elena Pohl wurde im Journal PLOS One veröffentlicht.  [Link 3]DOI: 10.1371/journal.pone.0088474

 

Weitere Informationen


 

Pressefoto

Was wie ein Sonnensturm aussieht, sind Nervenzellen, die sich aus embryonalen Stammzellen differenziert haben. (Foto: Anne Rupprecht/Vetmeduni Vienna)
Eine Stammzelle differenziert in eine Nervenzelle unterm Mikroskop.

 

Rückfragehinweis

Univ.-Prof. Dr.med. Elena Pohl
T +43 1 25077-4570
E-Mail an Elena Pohl senden  [Link 5]


 

Aussenderin

Dr.rer.nat. Susanna Kautschitsch
T +43 1 25077-1153
E-Mail an Susanna Kautschitsch senden  [Link 6]